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Chapter 1

Introduction

Pendulum is a classic mechanical device used by human beings for ages.

Among scientists who investigated pendulum’s properties were famous names

such as Galileo, Huygens, Newton, Hooke. Using pendulum, fundamental

laws of classic mechanics were determined (collisions law, conservation law,

value of gravitational acceleration). The variation of gravitation accelera-

tion due to shape of the earth were proved, not to mention the Foucault

pendulum giving evidence to rotation of the earth. The pendulum con-

tributed to revolution in horology, when Huygens’s pendulum clock was

more accurate than mechanical clocks of that time.

The simple pendulum when subjected to small angular displacement

oscillates with the natural frequency dependent only on its length. It rep-

resents simple harmonic motion. One has to remember that it is just an

idealistic conservative model. When taking into account energy losses due

to air resistance, friction, damping more complicated behaviour is observed.

This goes further when a second pendulum is attached creating double pen-

dulum and the system is subjected to periodic excitation. Here a chaotic

motion could be observed requiring more sophisticated mathematical tools

for the analysis. In order to solve such models numerical methods are ap-

plied. [8] Numerical methods are time consuming and require considerably

large computation power. However, the recent development of electronics

increases the speed of the numerical operations and makes it possible to

1



2 CHAPTER 1. INTRODUCTION

perform calculations on computers available widely on the market.

This paper investigates the dynamics of double pendulum subjected to

parametric horizontal periodic excitation. In following chapters theoretical

background, mathematical model and results of the research are presented.

The thesis is realised within the TEAM programme of Foundation for Polish

Science, co-financed from European Union, Regional Development Fund.

1.1 A brief description of the investigated

system

The investigated system is a double pendulum with horizontal parametric

excitation. It consists of two limbs, where the first one is inelastic and the

second elastic. The pendulum is subjected to horizontal excitation which

means that the point of pendulum’s suspension moves horizontally. More

details about the system are presented in chapter 3.

Figure 1.1: The scheme of the investigated system
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1.2 The aim of the thesis

The aim of this thesis is to examine the dynamics of double pendulum

subjected to horizontal excitation, which includes:

• creation of mathematical model

• writing own programs for solving and analysing ordinary differential
equations

• analysing behaviour of the system basing on bifurcation diagrams for
different control parameters

• analysing of the system basing on Poincaré maps and phase diagrams





Chapter 2

Theoretical background

In order to investigate dynamics of a nonlinear system such as double pen-

dulum it is essential to get acquainted with the basic theory and tools

concerning dynamics and analysis of the differential equations.

2.1 Lagrangian mechanics

Lagrangian mechanics describes motion in a mechanical system by means

of the configuration space. The Lagrangian point of view allows to solve

completely a series of important mechanical problems, including problems

in the theory of small oscillations and in the dynamics of a rigid body. [2]

Definition 1. (Constrain [9])

Reasons for limitation of mass points system are called constrains.

Definition 2. (Constrain equations [9])

The limitation of movement of mass points can be presented analytically

using formula having general form:

fk(~r1, ~r2, ..., ~rn) = 0 (k = 1, 2, ..., p). (2.1)

Definition 3. (Degrees of freedom [9])

Number f given by formula:

f = 3n− p (2.2)

5



6 CHAPTER 2. THEORETICAL BACKGROUND

represents the number of degrees of freedom of the system of n mass points.

It shows the number or independent variables from 3n coordinates x1, y1,

z1, ..., xn, xn, xn bounded by p equations.

Definition 4. (Generalised coordinates( [1])

Generalised coordinates are a set of convenient coordinates, usually inde-

pendent of one another, used to describe the configuration of a particular

system. If the system is subjected to some additional constraints that will

result in some dependency between the generalised coordinates, the num-

ber of independent generalised coordinates defines the number of degrees of

freedom.

After choosing proper generalised coordinates, it is possible to model

the system equation defined below:

Definition 5. (Second order Lagrange equations [5])

For n degrees of freedom system, described by n generalised coordinates qi,

i = 1,2,...,n, second order Lagrange equations have the following form:

d

dt
(
∂T

∂q̇i
)− ∂T

∂qi
+

∂D

∂q̇i
+

∂V

∂qi
= Qi (2.3)

where T is kinetic energy, V potential energy, D Rayleigh’s dissipation func-

tion and Qi is generalised external force acting on system. Qi is given by

formula:

Qi =
∑

l

Fl

∂rl
∂qi

+
∑

l

Ml

∂ωl

∂q̇i
(2.4)

where Fl and Ml are vectors of external forces and moments respectively, rl

is position vector in relation to point of force Fl application and ωl is angular

velocity of the system in relation to point of moment Ml application. The

products in the above formula are scalar products.
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2.2 Dynamical systems

Definition 6. (Autonomous system [4])

Consider the following system of differential equations:

dx

dt
= f(x), x(t0) = x0 (2.5)

where x ∈ D ⊂ R
n, t ∈ R

+and D is an open subset of Rn. If the right hand

side does not depend explicitly on time the system is called autonomous.

Definition 7. (Non-autonomous system [4])

Consider the following system of differential equations:

dx

dt
= f(x, t), x(t0) = x0 (2.6)

where x ∈ D ⊂ R
n, t ∈ R

+and D is an open subset of Rn. If the right hand

side depends explicitly on time the system is called non-autonomous.

The example of non-autonomous system is a system oscillating with

external excitation, where energy is delivered to the system.

The set D is called a phase space. [7]

Definition 8. (Dynamical system [7])

As a dynamical system, described by the system of equations (2.5), we call

a mapping

φ : R×D → R
n (2.7)

described by the solution x(t) of the system of equations (2.5).

Definition 9. (Vector field [7])

Function f, which is the right hand side of the (2.5) describes mapping f

f : D → R
n (2.8)

defining vector field in Rn.

Definition 10. (Phase flow [7])

Mapping

φt : D → R
n (2.9)

is called phase flow.
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In [7] Kapitaniak defines phase space of a dynamic system as abstract

space with orthogonal coordinates. Each coordinate describes variable needed

to describe state of the system, (e.g. to describe the state of mass moving

along a line, displacement x and velocity dx/dt are necessary). In gen-

eral, phase space of the dynamic system described by the equation (2.5) is

n-dimensional (equal to the dimension of the system).

For the system of equation given by general form

dxi

dt
= fi(x), i = 1, 2, ..., n (2.10)

if f1(x) 6= 0 then it is possible to take x1 component of vector x as new

independent variable. Then it yields to:

dx2

dx1
=

f2(x)

f1x
...
dxn

dx1
=

fn(x)

f1x
. (2.11)

Definition 11. (Trajectory [7])

Solutions of the (2.11) in phase space are called trajectory (orbit) of the

system.

Definition 12. If there exists T > 0 such that

f(x, t) = f(x, t+ T ) (2.12)

for every x and t, the system of equations (2.6) is called periodic with period

T.

Definition 13. (Attractor [4])

A specific subset A in a phase space of equation f : Rn × R → R
n, t ∈ R,

which is reached asymptotically by trajectory x(t), when t → ∞(t → −∞)

is called an attractor (repeller).
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2.3 Bifurcations

In English the verb ’bifurcate’ is a formal word to express that something

divides into two separate parts (e.g. river, road). This trivial example is

somehow related to bifurcation in mathematical sense.

Definition 14. (Bifurcation [7])

Bifurcation occurs when the solution of nonlinear differential equation

dx

dt
= f(x, µ), (2.13)

where

f : Rn × R→ R
n, t, µ ∈ R, x ∈ R

n

changes qualitatively its character along the change of parameter µ. The

value of the parameter µ = µc, for which this change occurs is called a point

of bifurcation.

The theory of bifurcation investigates the influence of parameter µ on

the number or character of attractors. Bifurcations are divided into local

and global. Local bifurcations occur in the neighbourhood of fixed points

or periodic solution of the system. The bifurcation which requires global

view on the phase space of the system and cannot be observed in the same

neighbourhood as local is called global bifurcation. Below basic types of

local bifurcations are considered.

2.3.1 Pitchfork bifurcation [7]

Consider a dynamical system described by equation:

dx

dt
= ax− bx3 (2.14)

where x ∈ R, a and b are real constants. The fixed points of (2.14) are

x = 0 for x ∈ R

and



10 CHAPTER 2. THEORETICAL BACKGROUND

(a) Supercritical case (b) Subcritical case

Figure 2.1: Pitchfork bifurcations

x = ±
√

a
b
for a, b ∈ R and a

b
> 0

The fixed point x = 0 is stable when b > 0 and a ≤ 0 or when b < 0

and a < 0. The fixed point x = 0 is unstable when b > 0 and a > 0. The

fixed points x = ±
√

a
b
are stable when b > 0 and a > 0. The fixed points

x = ±
√

a
b
are unstable when b < 0 and a < 0.

The case where b > 0 is called supercritical bifurcation as the quali-

tatively new solution occurs for a > ac. The case where b < 0 is called

subcritical bifurcation. Because of the shape of the plots presented in Fig-

ures 2.1 this type of the bifurcations is called pitchfork bifurcation.

2.3.2 Saddle-node bifurcation

Consider system described by the equation :

dx

dt
= a− x2 (2.15)

where x ∈ C

The fixed points of (2.15) are

x1,2 = ±
√
a (2.16)

For a > 0 there are two fixed points, for a = 0 one and for a < 0 fixed

points do not exists.
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Figure 2.2: Saddle-node bifurcation [7]

The number of fixed points changes when parameter a goes through 0.

So does the stability of the fixed points when parameter x = ±
√
a goes

through 0. Such a bifurcation is called saddle-node bifurcation.

2.3.3 Hopf bifurcation [7]

Hopf bifurcation means loss of stability of fixed points resulting in emerging

of the periodic solution.

Consider a system of differential equations

dx

dt
= −y + (a− x2 − y2)x (2.17)

dy

dt
= x+ (a− x2 − y2)y

where a ∈ R. Assuming
dx

dt
=

dy

dt
= 0 (2.18)

it is possible to show that (x, y) = (0, 0) is a fixed point. Linearising equa-

tion (2.17) in the neighbourhood of fixed point

dx

dt
= −y + ax (2.19)

dy

dt
= x+ ay

The solution of linearised system (2.19) is linear combination of functions

x(t) = eλtu (2.20)

y(t) = eλtv
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fulfilling the equation

Au = su (2.21)

where s is the eigenvalue, u = [u, v]T are eigen vectors and A is 2x2 matrix

[

a −1
1 a

]

(2.22)

Then

0 = det(A− sI) =

∣

∣

∣

∣

∣

a− s −1
1 a− s

∣

∣

∣

∣

∣

= (a− s)2 − 1 (2.23)

s = a± i (2.24)

The solution of linearised system is stable for a < 0 and unstable for a > 0.

Transforming the system (2.17) into polar coordinates yields to:

(
dr

dt
+ ir

dθ

dt
)eiθ (2.25)

dr

dt
= r(a− r)2 (2.26)

dθ

dt
= 1

r2(t) =







ar2
0

r2
0
+(a−r2

0
)e−2at

a 6= 0
r2
0

1+2r2
0
t

a = 0
(2.27)

For a < 0 all phase trajectories x(t)→ 0 when t→∞ and point x(0, 0)
is attractor (see Figure 2.3a). For a > 0 point x(0, 0) becomes a repeller

and new static solution appears, which is a limit-cycle (see fig. 2.3b).

x =
√
cos(t+ θ0) (2.28)

y =
√
sin(t+ θ0)
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(a) Before Hopf bifurcation (b) After Hopf bifurcation

Figure 2.3: Behaviour of phase trajectories before and after the Hopf bifur-
cation [7]

Figure 2.4: Limit-cycle as a result of Hopf bifurcation [7]
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2.4 Route to chaos

There are 3 basic routes to chaos:

• Hopf bifurcation

• period doubling

• saddle-node bifurcation

2.4.1 Hopf bifurcation

In previous section 2.3, where Hopf bifurcation was described, it was men-

tioned that Hopf bifurcation causes limit cycle starting from a fixed point.After

the first Hopf bifurcation system may undergo further Hopf bifurcations

yielding to quasi-periodicity of the system and eventually a strange attrac-

tor can be created.

2.4.2 Period doubling

Consider dynamical system called logistic map

xn+1 = µxn(1− xn) (2.29)

that maps itself in range [0,1].

Bellow, a bifurcation diagram for logistic map is presented (see Figure 2.5),

giving the information about the character of the system’s behaviour The

first period doubling occurs about µ = 3.0,with period 2-atractor. Then for

bigger values of µ , the period doubling occurs again and again , leading

eventually to chaotic behaviour of the system.
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Figure 2.5: Bifurcation diagram for logistic map [3]

2.5 Visual representation of the system

The analysis of the dynamical system is performed using special graphs

helping to interpret the character of system’s behaviour. The pallet of

tools includes time diagram, phase portrait, Poincaré map and bifurcation

diagram.

2.5.1 Time diagram

The time diagram provides the information about the solution of the dif-

ferential equation at the specific moment of time for respective variable

describing the investigated system. It gives a brief view of the system prop-

erties. Should the plotted time range be long enough, it is possible to

observe periodicity or irregular curves giving suspicion of quasi-periodicity

or chaos. Further analysis requires more advanced tools.

2.5.2 Phase portrait

The solution of the system of differential equations evolves in time. In phase

portrait the coordinates in phase space of point representing the solution of

the system in given time instance are collected and projected on respective

phase plains yielding to 2D plot. The shape of the phase portrait provides
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information about the system behaviour. A close-loop shape indicates that

the system is periodic. An irregular open shape may suggest chaos.

2.5.3 Poincaré map

Poincaré map is a powerful tool for describing the character of system be-

haviour. It was suggested by the French scientist, who contributed signif-

icantly to the analysis of the differential equations. Using Poincaré map,

it is possible to recognise whether the system is periodic, quasi periodic or

chaotic. The definition of Poincaré map depends on whether the system is

autonomous or non-autonomous. As the system investigated in this thesis is

non-autonomous, only the definition of Poincaré map for non-autonomous

system is presented. For a time periodic n dimensional non-autonomous

system with period T which can be transformed into an (n+1) dimensional

order autonomous system in the cylindrical phase space Rn×S1 the Poincaré

map can be defined in the following way.

Definition 15. (Poincaré map [6])

Let one consider the n-dimensional surface S ⊂ R
n × S1

S = (x, θ) ⊂ R× Sn : θ = θ0 (2.30)

when after every period T , the orbit x(t) intersects S (see Figure 2.6).The

resulting map P : S → S(Rn → R
n) which maps x(t) → x(t + T ) is a

Poincaré map

The analysis of Poincaré maps helps to determine the character of the

system behaviour. If the system has periodic behaviour, then on the Poincaré

map single point is plotted. Should the system be quasi-periodic, the ob-

tained map presents the closed loop. Finally, if on the Poincaré map irreg-

ular points are plotted, it suggests chaotic behaviour.
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Figure 2.6: Surface S [7]
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Figure 2.7: Poincaré maps for different behaviours of the system

2.5.4 Bifurcation diagrams

Bifurcations were discussed in section 2.3. In fact, bifurcation diagram

presents multiply Poincaré maps for different value of bifurcation param-

eter. The bifurcation parameter is on the x-axis, while on the y-axis the

selected variable describing the ODE system. The points on the bifurcation

diagram are projection of Poincaré map of the respective variable for spe-

cific value of bifurcation parameter. Therefore the pattern for determining

the character of the system behaviour is the same. When for specific value

of bifurcation parameter there is only one point on the diagram, the sys-

tem is periodic. Multiply points for specific value of bifurcation parameter

distributed irregular (regular) indicates chaos (quasi-periodicity). The bi-

furcation diagram shows the behaviour of the system in the wide range of



18 CHAPTER 2. THEORETICAL BACKGROUND

bifurcation parameter. When the bifurcation parameter is increased in each

successive iteration the bifurcation is called forward. Reaching the end of

the interval of the bifurcation parameter the last saved results are used as

initial parameters for backward bifurcation (i.e. the bifurcation parameter

is decreased until it reaches the beginning of the interval). Using forward

and backward bifurcation diagrams, it is possible to check if the solution

follows the same attractor or there exist another solution of the system.



Chapter 3

Mathematical model

Before investigating any dynamics system, it is essential to provide a model,

which describes all relevant physical properties in language of mathematics.

With the application of Lagrangian mechanics, a general model for double

elastic pendulum with elliptical excitation is derived, followed by special

case for double pendulum excited horizontally, with only one elastic limb.

As a result, a set of ordinary differentials equations is obtained, which are

later used in computer program.

3.1 General model

Consider a 2D double pendulum with elastic limbs. The limbs of the pendu-

lum are: assumed to be mass-less with point masses m1 and m2 attached to

end of each limb respectively, elastic (i.e. treated as swinging springs with

spring constants k1 and k2). Additional parameters are : the rest lengths

of limbs lr1 , lr2, damping coefficients on connecting nodes c1 , c2 and on

springs c3, c4. The system has 4 degrees of freedom.

The elliptical movement of the pendulum’s suspension can be resolve into

horizontal Wx and vertical Wy displacements, where amplitudes Ax, Ay are

respective radiuses of the ellipse, ωx, ωy are frequencies of excitations and t

is time :

Wx = Ax cosωxt (3.1)

19
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Figure 3.1: Scheme of double elastic pendulum with elliptical excitation

Wy = Ay sinωyt (3.2)

The successive derivatives of Wx used in later calculations are :

Ẇx = −Axωx sinωxt (3.3)

Ẇy = Ayωy cosωyt (3.4)

Ẅx = −Axωx
2 cosωxt (3.5)

Ẅy = −Ayωy
2 sinωyt (3.6)

The origin of the Cartesian coordinate system is placed on the node

connecting pendulum with suspension, for the displacement Wx = 0 and

Wy = 0. The x-axis is oriented rightwards and y-axis downwards.

In the state of rest both springs are extended by the loads (see Figure

3.2b) . Therefore their initial lengths l01 and l02 are:

l01 = lr1 + (m1 +m2)
g

k1
(3.7)

l02 = lr2 +m2
g

k2
(3.8)

While swinging, springs elongate further and their lengths are l1 and l2.

The motion of the pendulum is modelled with Lagrangian approach using
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(a) Unloaded pendulum (b) Loaded pendulum

Figure 3.2: Initial states of pendulum

ϕ1, ϕ2, l1 and l2 (see Figure ??) as generalised coordinates. The derivation

of terms in (2.3) is as follows:

~r1 = (l1 sinϕ1 +Wx)̂i+ (l1 cosϕ1 +Wy)ĵ (3.9)

~r2 = (l1 sinϕ1 +Wx + l2 sinϕ2)̂i+ (l1 cosϕ1 +Wy + l2 cosϕ2)ĵ (3.10)

where ~r1 and ~r2 are position vectors of each respective mass. Derivation of

(3.9) and (3.10) yields to:

~̇r1 = (l̇1 sinϕ1 + l1ϕ̇1 cosϕ1 + Ẇx)̂i+ (l̇1 cosϕ1 − l1ϕ̇1 sinϕ1 + Ẇy)ĵ (3.11)

~̇r2 = (l̇1 sinϕ1 + l1ϕ̇1 cosϕ1 + Ẇx + l̇2 sinϕ2 + l2ϕ̇2 cosϕ2)̂i (3.12)

+(l̇1 cosϕ1 − l1ϕ̇1 sinϕ1 + Ẇy + l̇2 cosϕ2 − l2ϕ̇2 sinϕ2)ĵ

Eventually squares of velocities (3.11) (3.12) are obtained :

v1
2 = l̇1

2
+ Ẇx

2
+ Ẇy

2
+ l1

2ϕ̇1
2 + 2l̇1Ẇx sinϕ1 (3.13)

+2l1ϕ̇1Ẇx cosϕ1 + 2l̇1Ẇy cosϕ1 − 2l1ϕ̇1Ẇy sinϕ1
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v2
2 = 2l1ϕ̇1Ẇx cosϕ1 − 2l1ϕ̇1Ẇy sinϕ1 + 2l̇1Ẇx sinϕ1 + 2l̇1Ẇy cosϕ1

+l̇1
2
+ Ẇx

2
+ Ẇy

2
+ l1

2ϕ̇1
2 + 2l2Ẇxϕ̇2 cosϕ2 − 2l2Ẇyϕ̇2 sinϕ2 +

+2l̇1l̇2cos (ϕ1 − ϕ2) + 2l1l2ϕ̇1ϕ̇2cos (ϕ1 − ϕ2) + l̇2
2
+ 2l̇1l2ϕ̇2 sin (ϕ1 − ϕ2)

+l2
2ϕ̇2

2 − 2l1l̇2ϕ̇1 sin (ϕ1 − ϕ2) + 2l̇2Ẇx sinϕ2 + 2l̇2Ẇy cosϕ2

(3.14)

Having (3.13) and (3.14), it is possible to calculate kinetic energy T of the

system.

T =
1

2
m1v1

2 +
1

2
m2v2

2 (3.15)

The potential energy V of the system is given by the following formula :

V = m1gl1(1− cosϕ1) +m2g(l1(1− cosϕ1) + l2(1− cosϕ2)) + (3.16)

+
k1
2
(l1 − l01)

2 +
k2
2
(l2 − l02)

2

The last element to calculate is the Rayleigh’s dissipation function D.

D =
1

2
(c1ϕ̇1

2 + c2(ϕ̇2 − ϕ̇1)
2 + c3l̇1

2
+ c4l̇2

2
) (3.17)

Applying (3.15) (3.16) and (3.17) in (2.3) and using q as generalised coor-

dinate

q =













ϕ1

ϕ2

l1

l2













(3.18)

one obtains a four-dimensional system of second order Lagrange’s equations.

The system of equations is transformed, so that every product without

acceleration of generalised coordinate is on the right-hand side. It yields to

matrix form :

Mq̈ = R (3.19)

where M is mass matrix and R right-hand side matrix
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M
=

     

(m
1
+
m

2
)l

2 1
m

2
l 1
l 2
co
s
(ϕ

1
−

ϕ
2
)

0
−
m

2
l 1
si
n
(ϕ

1
−
ϕ
2
)

m
2
l 1
l 2
co
s
(ϕ

1
−

ϕ
2
)

m
2
l2 2

m
2
l 2
si
n
(ϕ

1
−
ϕ
2
)

0

0
m

2
l 2
si
n
(ϕ

1
−

ϕ
2
)

m
1
+
m

2
m

2
co
s
(ϕ

1
−
ϕ
2
)

−
m

2
l 1
si
n
(ϕ

1
−

ϕ
2
)

0
m

2
co
s
(ϕ

1
−

ϕ
2
)

m
2

     

(3
.2
0)

q̈
=

     

ϕ̈
1

ϕ̈
2 l̈ 1 l̈ 2

     

(3
.2
1)
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3.2 Investigated case

In section 3.1 a general model for the system of double spring pendulum

with elliptical excitation was proposed. Here a special case is investigated

with only horizontal excitation and inelastic first limb of pendulum. The

derivation of equations is done using the same approach as in section 3.1.

The aim is to check whether this case satisfies relations for the general

model.

Figure 3.3: Scheme of the investigated system

The investigated model consists of 2D double pendulum with horizontal

periodic excitation. The system has 3 degrees of freedom. The limbs of

the pendulum are assumed to be mass-less with point masses m1 and m2

attached to the end of each limb respectively. The first rod is inextensi-

ble and taut with constant length l1, while the second is treated as elastic

pendulum with rest length lr2 and spring constant k2. Additionally, due

to friction on connecting nodes damping is included to the model by re-

spective viscous damping coefficients c1, c2 and c4 as damping coefficient

of the spring. The suspension of the pendulum is moving horizontally with

periodic displacement Wx(t).
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Wx = Ax cosωxt (3.23)

where t is time, Ax is the amplitude and ωx frequency of excitation. The

successive derivatives of Wx used in later calculations are :

Ẇx = −Axωx sinωxt (3.24)

Ẅx = −Axωx
2 cosωxt (3.25)

In the state of rest spring is extended by the load (see Figure 3.4). Therefore,

its initial length l02:

l02 = lr2 +m2
g

k2
(3.26)

(a) Unloaded
pendulum

(b) Loaded pendulum

Figure 3.4: Initial states of pendulum

Following steps in section 3.1 one obtains:

~r1 = (l1 sinϕ1 +Wx)̂i+ (l1 cosϕ1)ĵ (3.27)

~r2 = (l1 sinϕ1 +Wx + l2 sinϕ2)̂i+ (l1 cosϕ1 + l2 cosϕ2)ĵ (3.28)

~̇r1 = (l1ϕ̇1 cosϕ1 + Ẇx)̂i+ (−l1ϕ̇1 sinϕ1)ĵ (3.29)

~̇r2 = (l1ϕ̇1 cosϕ1+Ẇx+l̇2 sinϕ2+l2ϕ̇2 cosϕ2)̂i+(−l1ϕ̇1 sinϕ1+l̇2 cosϕ2−l2ϕ̇2 sinϕ2)ĵ

(3.30)
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v21 = l21ϕ̇1
2 + 2l1Ẇxϕ̇1 cosϕ1 + Ẇ 2

x (3.31)

v22 = l21ϕ̇1
2 + 2l1Ẇxϕ̇1 cosϕ1 + Ẇ 2

x + l̇2
2
+ l22ϕ̇2

2 + 2Ẇx(l2ϕ̇2 cosϕ2 + l̇2 sinϕ2)

+2l1(lϕ̇1ϕ̇2 cos (ϕ1 − ϕ2)− l̇2ϕ̇1 sin (ϕ1 − ϕ2))

(3.32)

Knowing (3.31) and (3.32), it is possible to calculate kinetic energy T :

T =
1

2
m1v

2
1 +

1

2
m2v

2
2 (3.33)

Potential energy V is defined as follows

V = m1gl1(1− cosϕ1) +m2g(l1(1− cosϕ1) + l2(1− cosϕ2)) +
k2
2
(l2 − l02)

2

(3.34)

and the Rayleigh’s dissipation function

D =
1

2
(c1ϕ̇1

2 + c2(ϕ̇2 − ϕ̇1)
2 + c4l̇2

2
) (3.35)

Solving (2.3) using(3.33) (3.34) and (3.35) and q as generalised coordinate

q =









ϕ1

ϕ2

l2









(3.36)

After transformations similar to that in section 3.1 three-dimensional system

of equations is obtained presented below in matrix form

Mq̈ = R (3.37)

Pre-multiplying both sides of the (3.37) one obtains

q̈ = M−1R (3.38)

All operations on the right hand side of the (3.38) are performed by com-

puter program.
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Chapter 4

Numerical analysis

In this chapter results of the numerical analysis of the double pendulum

with parametric horizontal excitation are presented. The mathematical

model used in the analysis is described in 3.2. The analysis was performed

by author’s software written in C.

4.1 Program

For purpose of the thesis a special program was written in C language and

compiled by GCC compiler. The program uses 1.15 version of GNU Sci-

entific Library (GSL) and is designed to work with UNIX based operating

systems. The system of second order differential equations presented in

chapter 3.2 is reduced to ordinary different and solved using GSL built-in

explicit 4th order Runge-Kutta method with fixed time step. The time

step is T/3600 where T is the period of excitation. Variations of program

using the same integrating core were written depending on the desired out-

put (phase diagram, Poincaré map, bifurcation diagram). The reason why C

programming language was chosen for that task was determined by the GSL

library itself, as it is written in C. Although there exist wrapping classes

for GSL in C++ or Java, it was better to stick to the original language of

the library. One of the most important factors which was taken into con-

29
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sideration while designing the program was the optimisation, so that the

execution time is low. Therefore, software is executed from the command

shell. The program is called along with the value of the initial conditions.

Should multiple simulations be performed, it is possible to write bash script,

enabling automatic launch of one simulation after another. For computers

with multi-cores CPU it is advised to launch simulations parallel (one simu-

lation per core), so that the available computation power is maximised. The

execution time of single simulation remains the same, however the CPU load

reaches it maximum and no other activity on the PC is advised.

4.2 Simulation

It was important to choose parameters of the investigated system in such

a manner that they correspond to sensible values from engineering point of

view . Therefore, the following parameter values were assumed:

m1 = 2 kg

m2 = 4 kg

l1 = 0.75 m

lr2 = 0.7 m

Ax = 0.3 m

The spring coefficient k2 is analysed for 2 different values

k2 = 500 N/m

k2 = 1000 N/m

The damping coefficients c1, c2 and c4 are set, so thatthe system is

underdamped.

c1 = 0.04 ·m1

√

gl1
3 kgm2/s (4.1)
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c2 = 0.02 ·m2

√

gl02
3 kgm2/s (4.2)

c4 = 0.1 · 2
√

m2k2 kg/s (4.3)

The simulation starts with following initial conditions:

ϕ1 =
π

6
rad

ϕ̇1 = 0 rad/s

ϕ2 =
π

8
rad

ϕ̇2 = 0 rad/s

l2 = l02 + 0.01 m

l̇2 = 0 m/s

The data are saved after 250 periods of excitation when the system

stabilises. For the bifurcation diagram data from 100 periods of excitation

is recorded.

4.3 Results

In order to find out the behaviour of the system depending on the angular

frequency ωx forward and backward bifurcation over interval [0.1, 10] Hz

is performed. The bifurcation parameter ωx is changed with step 0.05. At

first the system is investigated for spring coefficient k2 = 500 N/m and

then k2 = 1000 N/m. Since the behaviour on the bifurcation diagrams for

each respective generalise coordinate is similar, only selected bifurcation

diagrams are presented.

The analysis of Figures 4.1 and 4.2 reveals different kinds of oscillatory

motion in terms of periodicity. From small value of ωx a periodic motion

is observed. At 4.7 Hz the period of oscillations doubles, while in 5.2 Hz

solution hoops to another attractor with period-3, followed again by zone

of singular period oscillations (ωx > 6 Hz). The change of attractor occurs

also in 8 Hz. Eventually, the system reaches chaos for ωx > 9.2 Hz. From

backward bifurcation diagram it can be observed that the system follows
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slightly different attractor, which implies coexistence of attractors. Figure

4.3 presents the bifurcation in range [2.2, 3.0] Hz with bifurcation param-

eter step 0.005. In that range the system remains periodic. Figure 4.4

also presents detailed bifurcation on the interval [4.6, 6.0] Hz, where it is

possible to observe several change of the attractor. The double period at-

tractor is followed by singular period attractor and then it goes to period-3

attractor. Figure 4.5 shows detailed view on interval 7.9 Hz < ωx < 8.1

Hz. The applied bifurcation parameter step was 0.001. Here hooping be-

tween attractors is observed, but in detailed calculations the solution goes

to different attractor than on the general view (Figure 4.1).
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Figure 4.1: Forward bifurcation diagram for ϕ1 with k2 = 500 N/m
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Figure 4.2: Backward bifurcation diagram for ϕ1 with k2 = 500 N/m
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Figure 4.3: Forward bifurcations for 2.2Hz ≤ ωx ≤ 3Hz with 0.005 step
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Figure 4.4: Backward bifurcations for 4.6Hz ≤ ωx ≤ 6.0Hz with 0.005 step
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Figure 4.5: Forward bifurcations for 7.9Hz ≤ ωx ≤ 8.1Hz with 0.001 step
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Figure 4.6: Backward bifurcations for 8.1Hz ≥ ωx ≥ 7.9Hz with 0.001 step
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Figure 4.7: Forward bifurcation diagram for ϕ1 with k2 = 1000 N/m
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Figure 4.8: Backward bifurcation diagram for ϕ1 with k2 = 1000 N/m
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From the bifurcation diagrams in Figures 4.7 and 4.8 it is possible to

observe similar regions like for the system with k2 = 500 N/m. However,

there are some remarkable differences such as lack of period doubling or

period-3 attractors about 5 Hz. What is more, the appearance of quasi-

periodic zone about ωx = 2.4 Hz is observed. The quasi-periodicity occurs

also about ωx = 8 Hz, but in 8.25 Hz it changes to double period. About

ωx = 8.7 Hz the system is again quasi periodic only to become chaotic

in ωx = 9.15 Hz. There exist singular period periodic windows. As in

previous system the downward bifurcation follows slightly different attractor

but behaviour of the system is similar.
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(a) Phase portrait ωx = 2.4 Hz
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(b) Poincaré map ωx = 2.4 Hz
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(c) Phase portrait ωx = 2.7 Hz
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(d) Poincaré map ωx = 2.7 Hz

Figure 4.9: Phase portraits and Poincaré maps for different ωx for k2 =
1000 N/m
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(a) Phase portrait ωx = 8.1 Hz
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(b) Poincaré map ωx = 8.1 Hz
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(c) Phase portrait ωx = 9 Hz
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(d) Poincaré map ωx =9 Hz
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(e) Phase portrait ωx = 9.2 Hz
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(f) Poincaré map ωx = 9.2 Hz

Figure 4.10: Phase portraits and Poincaré maps for k2 = 1000 N/m
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Figure 4.11: Forward bifurcation diagram for ϕ1 with k2 = 500 N/m and
ωx = 5.2 Hz
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Figure 4.12: Backward bifurcation diagram for ϕ1 with k2 = 500 N/m and
ωx = 5.2 Hz
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The value of parameters selected for the bifurcation diagrams in Figures

4.11 and 4.12 were ωx = 5.2 Hz and k2 = 500 N/m. To remind the results

from Figures 4.1 and 4.2 for that value of ωx and m1 = 2kg, we deal with

the attractor with period-3. The results in Figures 4.1 and 4.2 correspond

to these in Figures 4.11 and 4.12. The phase diagrams and Poincaré map

for selected values of m1 2.45 kg, 7.5 kg and 9 kg (see Figure 4.13) indicate

quasi-periodic behaviour. The periodic behaviour is detected for 3kg ≤
m1 ≤ 7kg, as well as for m1 < 2.3 kg.
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(a) Phase portrait m1 = 2.45 kg
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(b) Poincaré map m1 = 2.45 kg
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(c) Phase portrait m1 = 7.5 kg
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(d) Poincaré map m1 = 7.5 kg

Figure 4.13: Phase portraits and Poincaré maps for k2 = 500 N/m and ωx

= 5.2 Hz
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(a) Phase portrait m1 = 9 kg
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(b) Poincaré map m1 = 9 kg

Figure 4.14: Phase portraits and Poincaré maps for k2 = 500 N/m and ωx

= 5.2 Hz

Finally, the influence of mass m1 on the system with spring constant

k2 = 1000 N/m and frequency of excitation ωx = 8.4 Hz was investigated.

In Figures 4.7 and 4.8 for that particular frequency, a window of period-2

is observed. The bifurcation diagrams in Figures 4.15 and 4.16 reveal the

routes to chaos by Hopf bifurcation (m1 = 2.45 kg) and period doubling (m1

= 4 kg). For the interval m1 ∈ [2.5, 4.6] a chaotic behaviour is observed.

For m1 the system has double period. These observations are also based on

phase diagrams and Poincaré maps (see Figure 4.17).
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Figure 4.15: Forward bifurcation diagram for ϕ1 with k2 = 1000 N/m and
ωx = 8.4 Hz
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Figure 4.16: Backward bifurcation diagram for ϕ1 with k2 = 1000 N/m and
ωx = 8.4 Hz
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(a) Phase portrait m1 = 2.5 kg
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(b) Poincaré map m1 = 2.5 kg
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(c) Phase portrait m1 = 3.5 kg
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(d) Poincaré map m1 = 3.5 kg
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(e) Phase portrait m1 = 4.7 kg
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(f) Poincaré map m1 = 4.7 kg

Figure 4.17: Phase portraits and Poincaré maps for k2 = 1000 N/m and ωx

= 8.4 Hz
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Conclusions

The investigated system was double pendulum with parametric horizontal

excitation. The system has 3 degrees of freedom (two angles and length

of the spring in the second limb). The testing methods involve bifurcation

diagrams, phase diagrams and Poincaré maps. Numerical calculations were

performed by means of the author’s own program basing on GNU Scientific

Library.

The most important case in the thesis was to check the influence of the ex-

citation frequency on the system behaviour. During the analysis 3 types of

behaviours were observed (i.e. periodic, quasi-periodic and chaotic). Gen-

erally, for both tested spring coefficients k2 for most of the time the system

remains periodic. For bigger values of excitation frequency (ωx > 8 Hz) the

behaviour of the system changes. Either the numerical solution of the sys-

tem changes the attractor or the system begins to behave quasi-periodically,

eventually reaching chaos for ωx ≈ 10Hz. The quasi-periodic regions prior

to the chaotic ones indicate the sequence of Hopf bifurcation as route to

chaos. Another observed route to chaos was period doubling which occur

for bifurcations with mass m1 as a bifurcation parameter.

Apart from investigating the influence of the excitation frequency,the rela-

tion between mass m1 on the first limb of the pendulum for selected value

of excitation frequency was calculated. The results led to detecting regions

of periodic behaviour as well as quasi-periodic one.
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For all bifurcation diagrams forward and backward bifurcation were per-

formed which means that the bifurcation parameter was increased and af-

ter reaching the end of the investigated range decreased. The diagrams for

forward and backward bifurcations behave similarly, however it is clearly

visible that they follow slightly different attractors. It is an evidence of the

co-existence of the solutions.
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