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Preface

This master of science thesis is a part of ”Project TEAM of Foundation for Polish

Science” realising the investigation and analysis of the project ”Synchronization

of Mechanical Systems Coupled through Elastic Structure”. It is supported by

”Innovative Economy: National Cohesion Strategy”. The programme is financed by

”Foundation for Polish Science” from the European funds as the plan of ”European

Regional Development Fund”. The project is mainly focused on the following issues:

• Identification of possible synchronous responses of coupled oscillators, and

existence of synchronous clusters as well

• Dynamical analysis of identical coupled systems suspended on elastic structure

in context of the energy transfer between systems

• Investigation of phase or frequency synchronization effects in groups of coupled

non-identical systems

• Developing methods of motion stability control of considered systems

• Investigation of time delay effects in analysed systems

• Developing the idea of energy extraction from ocean waves using a series of

rotating pendulums.
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Chapter 1

Introduction

A word synchronization has its origin in ancient Greece and means ’to share the

common time’. The studies about synchronization have been the active field of

science since 17th century, when Dutch physician Christiaan Huygens performed his

experiment concerning two pendulum clocks hanging in the same beam. [1]

In his work Horologium Oscillatorium from 1673 Huygens stated: ’It is quite

worth noting that when we suspended two clocks so constructed from two hooks imbed-

ded in the same wooden beam, the motions of each pendulum in opposite swings were

so much in agreement that they never receded the least bit from each other and the

sound of each was always heard simultaneously. Further, if this agreement was dis-

turbed by some interference, it reestablished itself in a short time. For a long time I

was amazed at this unexpected result, but after a careful examination finally found

that the cause of this is due to the motion of the beam, even though this is hardly

perceptible.’

In this thesis the term synchronization will be understood as a phenomenon,

where two or more systems are closely related due to the act of coupling. Systems

are coupled if at least one has an effect upon one another. We may distinguish two

kinds of coupling: unidirectional and bidirectional. Unidirectional coupling means

that one of the coupled system evolves freely and affects the others. Bidirectional

coupling refers to systems, which are connected in such a way that they influence

each other’s dynamic. The coupling may refer to identical systems as well as to

non-identical. [1]
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Dynamics of the coupled Hénon maps

The another point raised here is bistability, which is very common phenomenon

in nature. A certain system is said to be bistable if it has two coexisting stable

states. We investigate the dynamics of the bidirectionally coupled non-identical

bistable Hénon maps. The behaviour of unidirectionally coupled identical bistable

Hénon maps has been investigated by J.M. Sausedo-Solorio and A.N. Pisarchik [2].

In following chapters mathematical background, mathematical analysis and re-

sults of the numerical research are presented. The thesis is realised within the

TEAM programme of Foundation for Polish Science, co-financed from European

Union, Regional Development Fund.

1.1 Aim of the thesis

The aim of the thesis is the investigation of the behaviour of the bidirectionally

coupled Hénon maps. Firstly, some of the basis properties of the Hénon map will be

shown. Next, three bistable maps will be chosen and coupled. Finally, the dynamics

of a such coupled system will be analysed.
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Chapter 2

Dynamical systems

2.1 Preliminary

Definition 1. A function f : R2 → R2 is called a map on R2.

Let f : R2 → R2 be a map on R2.

Definition 2. The map f is called the invertible map if the function f is bijection.

Definition 3. The map f is called the linear map if for every (x1, x2) ∈ R2

f(x1, x2) = (a11x1 + a12x2, a21x1 + a22x2), where a11, a12, a21, a22 ∈ R . [3]

Definition 4. Let x ∈ R2. The set of points {x, f(x), f 2(x), ..} is called the orbit

of x under f . The point x, which starts the orbit, is called the initial value of the

orbit. [3]

Definition 5. The point p ∈ R2 is called the fixed point of f , when f(p) = p. [3]

Definition 6. The point p ∈ R2 is called the periodic point of period k if fk(p) =

p and k is the smallest such positive integer. In this case we say that the orbit with

initial value p is the periodic orbit of period k. [3]

Definition 7. The phase portrait of f is a partitioning of R2 into orbits. [5]

Definition 8. A set A ⊂ R2 is called an invariant set under f if for every x0 ∈ A
and for every n ∈ N we have fn(x0) ∈ A. [4]
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Dynamics of the coupled Hénon maps

Definition 9. We say that a closed invariant set A ⊂ R2 is an attracting set if

there exists some neighbourhood U of the set A such that for every n ≥ 0 fn(U) ⊂ U

and
⋂

n>0 f
n(U) = A.

The mentioned set U is called a trapping region. [4]

Remark 1. If the set A in the definition 9 is a fixed point or a periodic orbit, then

we use the term an attracting fixed point or an attracting periodic orbit.

Definition 10. Let A ⊂ R2 be an attracting set and U ⊂ R2 any trapping region of

A. A set
⋃

n≥0 f
−n(U) is called basin of attraction of a set A. [4]

Remark 2. f−1(U) in definition 10 is understood as the preimage of the set U , so

for every n > 0 f−n(U) makes sense even if a map f is not invertible.

Definition 11. A closed invariant set A ⊂ R2 is topologically transitive if for every

two open sets U , V ⊂ A, there exists n > 0 such that fn(U) ∩ V 6= ∅. [4]

Definition 12. An attractor is a topologically transitive attracting set. [4]

Definition 13. We say that f has sensitive dependence on initial conditions

on A ⊂ R2 if there exists ε > 0 such that, for every x ∈ A and every neighbourhood

U of x, there exists y ∈ U and there exists n > 0 such that |fn(x)− fn(y)| > ε. [4]

Definition 14. A set A ⊂ R2 is called chaotic if:

• f has sensitive dependence on initial value on set A;

• f is topologically transitive on set A;

• the periodic orbits of f are dense in set A. [4]

Definition 15. Let A ⊂ R2 be an attractor. If set A is chaotic, it is called a strange

attractor. [4]
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Dynamics of the coupled Hénon maps

2.2 Analyses of fixed points and period orbits

Definition 16. Let p ∈ R2 and let f = (f1, f2) be a C1 map on R2. The matrix

Df(x) :=

 ∂f1

∂x1

(x)
∂f1

∂x2

(x)

∂f2

∂x1

(x)
∂f2

∂x2

(x)


is called the Jacobian matrix of map f at point x. [3]

Definition 17. Let A be a square matrix and let I be identity matrix. The solutions

λ of equation det(A− λI) = 0 are called the eigenvalues of matrix A. [3]

Theorem 1. Let p ∈ R2 be a fixed point of f and let λ1,2 be the eigenvalues of Df(p).

• If |λ1| < 1 and |λ2| < 1, then the point p is the attracting fixed point.

• If |λ1| > 1 and |λ2| > 1, then the point p is not the attracting fixed point.

• If |λ1| > 1 and |λ2| < 1, then the point p is not the attracting fixed point. [3]

Figure 1. The behaviour of orbits in the neighbourhoods of

exemplary attracting fixed points.

Figure 2. The behaviour of orbits in the neighbourhoods of

exemplary fixed points, which are not attracting.
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Dynamics of the coupled Hénon maps

Theorem 2. Let {p1, ..., pk}, where for i ∈ {1, ..., k} pi ∈ R2, be a periodic orbit of

period k of the map f and let λ1, λ2 be the eigenvalues of Df k(p1).

• If |λ1| < 1 and |λ2| < 1, then {p1, ..., pk} is the attracting periodic orbit.

• If |λ1| > 1 and |λ2| > 1, then {p1, ..., pk} is not the attracting periodic orbit.

• If |λ1| > 1 and |λ2| < 1, then {p1, ..., pk} is not the attracting periodic orbit.[3]

Remark 3. While using the theorem 2 and computing Df k(p1) the equality

Df k(p1) = Df(pk) ·Df(pk−1) · ... ·Df(p1)

might be helpful. [3]

2.3 Bifurcations

The term ’bifurcation’ means the sudden change of dynamics of the map (for example

its set of fixed points and period orbits) as some parameter is varied. There exist

a range of possible bifurcations, but we will focus on so called period-doubling

bifurcation.

In this section we will consider a r-parameter family of maps on Rn:

g(x, p) = (g1(x, p), g2(x, p), ..., gn(x, p)), x ∈ Rn, p ∈ Rr,

where x is variable, p is parameter and g : Rn × Rr → Rn is C1 function.

Definition 18. Let λ1 be the eigenvalue of the matrix


∂g1

∂x1

(x, p) ...
∂g1

∂xn
(x, p)

...
...

∂gn
∂x1

(x, p) ...
∂gn
∂xn

(x, p)

.

The bifurcation associated with the appearance of λ1 = −1 is called a flip or period-

doubling bifurcation. [5]

Period doubling bifurcation is connected with emerging of new period 2k orbit from

period k orbit, where k ∈ N.
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Dynamics of the coupled Hénon maps

Remark 4. The appearance of λ1 = −1 is only a necessary condition for existing a

period doubling bifurcation.

Definition 19. A bifurcation diagram is a stratification of parameters together

with representative orbits (or its projections) for each stratum. [5]

Now, we will analyse the example presented by Yuri A. Kuznetsov in [5]. The

example concerns one-dimensional map with one parameter.

Example 1. Let us define:

f(x, a) ≡ fa(x) = −(1 + a)x+ x3, (2.1)

where x ∈ R is variable and a ∈ R is parameter.

For the one-dimensional map g a fixed point x0 is attracting if |g′x(x0)| < 1 and

it not attracting if |g′x(x0)| > 1. g′x(x0) is an equivalent of the eigenvalue for one-

dimensional map.

It is easy to notice that x = 0 is a fixed point of (2.1). We will analyse (2.1) only in

the neighbourhood of x = 0. For the analysed map (2.1) f ′x(x, a) = −(1− a) + 3x2,

hence |f ′x(0, a)| = |1−a|. We have that |f ′x(0, a)| < 1, then a ∈ (0, 2) and |f ′x(0, a)| >
1, then a ∈ (−∞, 0) ∪ (2,∞). Therefore we may say that x = 0 is attracting fixed

point for sufficiently small a > 0 and it is not attracting fixed point for sufficiently

small a < 0. What is more f ′x(0, 0) = −1, what is a necessary condition for existing

a period doubling bifurcation. Considering bifurcation diagram presented in figure 3

we may be sure that for a = 0 a period-doubling bifurcation occurs.

Figure 3. Bifurcation diagram for map (2.1).
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Dynamics of the coupled Hénon maps

Example 2. The most popular map, where period-doubling occurs is the logistic map:

f(x, a) ≡ ax(1− x), (2.2)

where x ∈ [0, 1] is variable and a ∈ [1, 4] is parameter.

We will analyse the following bifurcation diagram created for the map (2.2):

Figure 4. Bifurcation diagram for map (2.2) for a ∈ [1, 4] and its enlarged views.

As might be seen in figure 4 for a ∈ [1, 3] there exists attracting fixed point, which

bifurcates via period doubling into period 2 orbit at a = 3. The mentioned attracting

period 2 orbit stops being attracting and attracting period 4 orbit emerge at a =

3.45. Increasing parameter a further period-doubling occurs till the emerging of

chaotic attractor.
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Chapter 3

The Hénon map

A map proposed by French mathematician and astronomer Michel Hénon is a simple

two-dimensional model with a complicated dynamic.

Michel Hénon presented a following map:

H(x, y) ≡ (1− ax2 + y,−bx),

where a and b are real parameters.

The model H(x, y) is known as the Hénon map.

H(x, y) is the composition of the following transformations of the point (x, y) ∈ R2:

• H ′(x, y) = (x, 1+y−ax2), where a is real parameter (H ′ simulate the folding);

• H ′′(x, y) = (−bx, y), where b is real parameter (H ′′ contracts or enlarge area

along the x-axis);

• H ′′′(x, y) = (y, x) (H ′′′ changes the orientation). [6]

Figure 5. Transformations H ′, H ′′ ◦H ′ and H ′′′ ◦H ′′ ◦H ′ of the ellipse

E =
{
(x, y) ∈ R2 : x2 +

(
y
2

)2
= 1
}

for a = 4 and b = −2.
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Dynamics of the coupled Hénon maps

Theorem 3. A map H(x, y), where b 6= 0, is invertible.

Proof. Firstly, we will show that H(x, y) is a surjective function. Let (u, v) ∈ R2.

We will show that there exists (x, y) ∈ R2 such that H(x, y) = (u, v). To find such

(x, y) ∈ R2, we consider system of equations given by:1− ax2 + y = u

−bx = v

Assuming b 6= 0, we obtain from the second equation x = −v
b
. Substituting it into

the first one we receive:

1− a
(v
b

)2

+ y = u

This way we obtain that y = u− 1 + a
(
v
b

)2
.

In conclusion we found (x, y) = (−v
b
, u−1+a

(
v
b

)2
) such that H(x, y) = (u, v) unless

b = 0. According to definition 1, we proved H(x, y) is a map on R2 unless b = 0.

Let us observe what happens if b = 0. If b = 0, then H(x, y) takes the form

H(x, y) = (1− ax2 + y, 0). It may be easily noticed that H(x, y) is not a surjective

function. For example let (u, v) = (0, 1) ∈ R2. Let us assume that there exists

(x, y) ∈ R2 such that H(x, y) = (0, 1). Hence we get:1− ax2 + y = 0

0 = 1

What leads us automatically to contradiction. Therefore we obtain that H(x, y) is

not surjective function for b = 0 and in consequence H(x, y) is not an invertible map

on R2 for b = 0.

Now, we will show that H(x, y) is a injective function. Let (x, y), (x̃, ỹ) ∈ R2

and let b 6= 0. To prove that a map H is injective function, we have to show that if

H(x, y) = H(x̃, ỹ), then (x, y) = (x̃, ỹ). Hence let us assume that H(x, y) = H(x̃, ỹ),

what is equivalent to: 1− ax2 + y = 1− ax̃2 + ỹ

−bx = −bx̃

10



Dynamics of the coupled Hénon maps

From the second equation we immediately obtain that x = x̃. Substituting it into

the first equation we obtain: 1−ax2+y = 1−ax2+ỹ. Hence y = ỹ. In a consequence

we have that (x, y) = (x̃, ỹ).

Now we will show that H−1(x, y) = (−y
b
, x − 1 + a

(
y
b

)2
) is the inverse of H(x, y).

Considering H(H−1(x, y)) and H−1(H(x, y)) we have:

H(H−1(x, y)) = H
(
−y

b
, x− 1 + a

(
y
b

)2
)

=
(

1− a
(−y

b

)2
+ x− 1 + a

(
y
b

)2
,−b−y

b

)
=

(x, y) andH−1(H(x, y)) = H−1(1−ax2+y,−bx) =
(
−b−x

b
, 1− ax2 + y − 1 + a

(−bx
b

)2
)

=

(x, y)

Hence H−1 is indeed the inverse of H(x, y).

3.1 Area-contraction

Firstly, we will find the condition, which parameters in H(x, y) must fulfil to en-

able the occurring of attracting sets. In this purpose the following definitions and

theorems will be introduced:

Definition 20. A map f : R2 → R2 is called area-contracting, if for every non-

empty Borel set B ⊂ R2, the area of f(B) is less than the area of B. [8]

Definition 21. A map f : R2 → R2 is called area-preserving, if for every non-

empty Borel set B ⊂ R2, the area of f(B) is equal to the area of B.

Definition 22. A map f : R2 → R2 is called area-expanding, if for every non-

empty Borel set B ⊂ R2, the area of f(B) is greater then the area of B.

Lemma 1. Let ∆ and D be Borel sets in R2. Assume that f : ∆→ D is a bijection

and has continuous partial derivatives in ∆. If g : D → R is a continuous function,

then: ∫∫
D

g(y)dy1dy2 =

∫∫
∆

g(f(x))|detDf(x)|dx1dx2. [7]

11



Dynamics of the coupled Hénon maps

Theorem 4. Let f be invertible C1 map on R2.

• If for every x ∈ R2 |detDf(x)| < 1, then the map f is area-contracting.

• If for every x ∈ R2 |detDf(x)| = 1, then the map f is area-preserving.

• If for every x ∈ R2 |detDf(x)| > 1, then the map f is area-expanding. [3]

Proof. Let f be invertible C1 map on R2 and let B be a Borel set.

Firstly, let us assume that for every x = (x1, x2) ∈ R2 |detDf(x)| < 1. Using the

lemma 1 (with ∆ = B and with g(y) = 1 for every y ∈ f(B)) and by the assumption

we have:

|f(B)| =
∫∫
f(B)

1dy1dy2 =

∫∫
B

|detDf(x)|dx1dx2 <

∫∫
B

1dx1dx2 = |B|

Hence the map f is area-contracting.

Now, let us assume that for every x = (x1, x2) ∈ R2 |detDf(x)| = 1. By analogy we

obtain:

|f(B)| =
∫∫
f(B)

1dy1dy2 =

∫∫
B

|detDf(x)|dx1dx2 =

∫∫
B

1dx1dx2 = |B|

That proves that map f is area-preserving.

Assuming that for every x = (x1, x2) ∈ R2 |detDf(x)| > 1, analogously we have:

|f(B)| =
∫∫
f(B)

1dy1dy2 =

∫∫
B

|detDf(x)|dx1dx2 >

∫∫
B

1dx1dx2 = |B|

Hence the map f is area-expanding.
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Dynamics of the coupled Hénon maps

Theorem 5. For every (x, y) ∈ R2 the absolute value of the determinant of DH(x, y)

is equal to |b|. Moreover:

• If |b| < 1, then the Hénon map H(x, y) is area-contracting.

• If |b| = 1, then the Hénon map H(x, y) is area-preserving.

• If |b| > 1, then the Hénon map H(x, y) is area-expanding.

Proof. Let (x, y) ∈ R2 and let H(x, y) = (H1(x, y), H2(x, y)) = (1 − ax2 + y,−bx).

Computing

|detDH(x, y)| =

∣∣∣∣∣∣∣det


∂H1

∂x
(x, y)

∂H1

∂y
(x, y)

∂H2

∂x
(x, y)

∂H2

∂y
(x, y)


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣det

 −2ax 1

−b 0

∣∣∣∣∣∣ = |b|,

by theorem 4 we obtain that for |b| < 1 H(x, y) is area-contracting, for |b| = 1

H(x, y) is area-preserving and |b| > 1 H(x, y) is area-expanding.

Theorem 6. If the Hénon map H(x, y) has an attracting set, then |b| < 1.

Proof. We assume that H(x, y) has an attracting set A ⊂ R2 and that, to the

contrary, |b| ≥ 1. We will consider two cases: |b| > 1 and |b| = 1.

Let |b| > 1. As H(x, y) has an attracting set A ⊂ R2, let U ⊂ R2 be a trapping

region of A. By definition 9, a trapping region fulfils H(U) ⊂ U . That leads to the

conclusion that the area of H(U) is less or equal to the area of U . On the other

hand, by theorem 5 H(x, y) is area-expanding, so the area of H(U) is greater than

area of U . Hence, we obtain a contradiction.

Let |b| = 1. Hence by theorem 5 H(x, y) is area-preserving. According to definition

9, there exists a neighbourhood U of the set A such that for every n ≥ 0 Hn(U) ⊂ U

and
⋂

n>0H
n(U) = A. As for every n ≥ 0 Hn(U) ⊂ U and the area of H(U) is

equal to the area of U , we have that for every n ≥ 0 Hn(U) = U . Therefore we have

that
⋂

n>0H
n(U) = U , but U 6= A as U is a neighbourhood of A. This way we get

a contradiction.

13
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3.2 Bifurcations

Now, we will analyse the behaviour of the H(x, y) connected with emerging of fixed

points and period orbits.

Remark 5. If a = 0, then H(x, y) is a trivial linear map.

Theorem 7. Let us assume that a 6= 0.

• If (b+ 1)2 + 4a < 0, then H(x, y) does not have fixed points.

• If (b+ 1)2 + 4a = 0, then H(x, y) has one fixed point:

(x, y) =
(
−(b+1)

2a
, b(b+1)

2a

)
.

• If (b+ 1)2 + 4a > 0, then H(x, y) has two fixed points:

(x, y) =

(
−(b+1)+

√
(b+1)2+4a

2a
, b

(b+1)−
√

(b+1)2+4a

2a

)
,

(x, y) =

(
−(b+1)−

√
(b+1)2+4a

2a
, b

(b+1)+
√

(b+1)2+4a

2a

)
.

Proof. Let a 6= 0. In order to find fixed points of H(x, y), we consider equation

H(x, y) = (x, y). Hence we have:x = 1− ax2 + y

y = −bx,

what implies:

ax2 + (1 + b)x− 1 = 0. (3.1)

Due to the fact ∆1 = (1 + b)2 + 4a, we have:

For ∆1 < 0 H(x, y) does not have fixed points.

For ∆1 = 0 H(x, y) has one fixed point: (x, y) =
(
−(b+1)

2a
, b(b+1)

2a

)
.

For ∆1 > 0 H(x, y) has two fixed points:

(x, y) =

(
−(b+1)+

√
(b+1)2+4a

2a
, b

(b+1)−
√

(b+1)2+4a

2a

)
,

(x, y) =

(
−(b+1)−

√
(b+1)2+4a

2a
, b

(b+1)+
√

(b+1)2+4a

2a

)
.
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Dynamics of the coupled Hénon maps

Theorem 8. The eigenvalues of the Jacobian matrix of the Hénon map H(x, y) are:

λ1 = −ax −
√
a2x2 − b and λ2 = −ax +

√
a2x2 − b. Furthermore, the following

relations are fulfilled: λ1 + λ2 = −2ax and λ1λ2 = b.

Proof. Let (x, y) ∈ R2 and let H(x, y) = (H1(x, y), H2(x, y)) = (1− ax2 + y,−bx).

To obtain the eigenvalues of DH(x, y) we are searching for the roots of function

det(DH(x, y)− λI):

det(DH(x, y)− λI) = det


∂H1

∂x
(x, y)− λ ∂H1

∂y
(x, y)

∂H2

∂x
(x, y)

∂H2

∂y
(x, y)− λ

 =

= det

 −2ax− λ 1

−b −λ

 = λ(2ax+ λ) + b = λ2 + 2axλ+ b = 0

Hence we get two eigenvalues of DH(x, y) λ1 = −ax−
√
a2x2 − b and λ2 = −ax +

√
a2x2 − b. Moreover, using the Vieta’s formulas we get that: λ1 + λ2 = −2ax and

λ1λ2 = b.

Theorem 9. Let a 6= 0.

If period doubling bifurcation connected with emerging of period 2 orbit occurs for

H(x, y), then it takes place for parameters fulfilling the relation a = 3
4
(1 + b)2

Proof. Let λ1, λ2 be the eigenvalues of DH(x, y). Assuming that λ1 = −1 and using

the theorem 8 we easily obtain the relation:

b+ 1 = 2ax. (3.2)

According to theorem 7 if (x, y) is a fixed point, then

x =
−(b+ 1)±

√
(b+ 1)2 + 4a

2a
. (3.3)

Now putting (3.3) into (3.2) we have that

2(b+ 1) = ±
√

(b+ 1)2 + 4a

what after considering two cases (b ≥ −1 and b < −1) implies that a = 3
4
(b+ 1)2.
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Theorem 10. Let us assume that a 6= 0.

H(x, y) has period orbit of period 2 if and only if 4a > 3(b+ 1)2.

Moreover, that period orbit consist of: (x, y) =

(
(b+1)+

√
4a−3(b+1)2

2a
,−b (b+1)−

√
4a−3(b+1)2

2a

)
and (x, y) =

(
(b+1)−

√
4a−3(b+1)2

2a
,−b (b+1)+

√
4a−3(b+1)2

2a

)
.

Proof. Let a 6= 0. In order to find periodic point of period two of H(x, y), we

consider equation H2(x, y) = (x, y), what is equivalent to:x = 1− a(1− ax2 + y)2 − bx

y = −b(1− ax2 + y),
(3.4)

Assuming that b 6= −1, we solve the second equation for y and substitute into the

first, obtaining:

(ax2 + (b+ 1)x− 1)(a2x2 − (b+ 1)ax− a+ (b+ 1)2) = 0 (3.5)

Firstly we will focus on the left factor of equation (3.5)

ax2 + (b+ 1)x− 1 = 0, (3.6)

which is the same as the equation (3.1).

The solutions of (3.6) are x =
−(b+1)±

√
(b+1)2+4a

2a
if (b+ 1)2 + 4a ≥ 0 and (3.6) has no

solutions for (b + 1)2 + 4a < 0. Substituting those points into the second equation

in (3.4) we obtain the following solution for (b+ 1)2 + 4a ≥ 0:(
−(b+1)+

√
(b+1)2+4a

2a
, b

(b+1)−
√

(b+1)2+4a

2a

)
and

(
−(b+1)−

√
(b+1)2+4a

2a
, b

(b+1)+
√

(b+1)2+4a

2a

)
.

According to theorem 7 those points are the fixed points of H(x, y). That result is a

consequence of the fact that fixed points of H(x, y) are also fixed points of H2(x, y).

Hence to find periodic point of period two, we consider equation:

ax2 − (b+ 1)x+
−a+ (b+ 1)2

a
= 0 (3.7)

Let us notice that determinant of equation (3.7) is equal to ∆2 = −3(b+1)2+4a. As a

result H(x, y) has a period-two orbit, if ∆2 > 0, what is equivalent to 4a > 3(b+1)2.

Solving (3.7) and substituting the result into the second equation in (3.5) we obtain

that considered period 2 orbit consist of the following points:

(x, y) =

(
(b+ 1) +

√
4a− 3(b+ 1)2

2a
,−b

(b+ 1)−
√

4a− 3(b+ 1)2

2a

)
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and

(x, y) =

(
(b+ 1)−

√
4a− 3(b+ 1)2

2a
,−b

(b+ 1) +
√

4a− 3(b+ 1)2

2a

)
.

We will now observe what happens for ∆2 = 0.

If ∆2 = 0, then equation (3.7) has one solution x = 2
3

1
b+1

and in a consequence (3.5)

has one solution given by:

(x, y) =

(
2

3

1

b+ 1
,−2

3

b

b+ 1

)
.

On the other hand, when ∆2 = −3(b+ 1)2 + 4a = 0, then determinant in theorem 7

is ∆1 = (b+ 1)2 + 4a = 4(b+ 1)2 > 0. Hence we obtain two fixed points, which are

equal to:

(x, y) =

(
2

3

1

b+ 1
,−2

3

b

b+ 1

)
and

(x, y) =

(
−2

(b+ 1)2
,

2b

(b+ 1)2

)
.

In the result the solutions of (3.5), in case ∆2 = 0, are the fixed points of H(x, y).

Now we will investigate what happens when b = −1. If b = −1, then (3.4) takes the

form: x = 1− a(1− ax2 + y)2 + x

y = 1− ax2 + y,
(3.8)

If a > 0 the solution of (3.8) are four points: (x, y) =
(

1√
a
, 1√

a

)
, (x, y) =

(
− 1√

a
, 1√

a

)
,

(x, y) =
(

1√
a
,− 1√

a

)
and (x, y) =

(
− 1√

a
,− 1√

a

)
. According to theorem 7 (x, y) =(

1√
a
, 1√

a

)
, (x, y) =

(
− 1√

a
,− 1√

a

)
are the fixed points of H(x, y). Hence (x, y) =(

1√
a
,− 1√

a

)
and (x, y) =

(
− 1√

a
,− 1√

a

)
is a period-two orbit of H(x, y).

If a < 0, then (3.8) has no solution.
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Remark 6. We may notice that the results of theorems 9 and 10 indeed corresponds

with each other. Hence the relation a = 3
4
(1 + b)2 is also sufficient condition for

period doubling.

Theorem 11. The eigenvalues of the Jacobian matrix of H2(x, y) fulfils the following

relations: λ1 + λ2 = −2b+ 4a2x(1− ax2 + y) and λ1λ2 = b2.

Proof. Let (x, y) ∈ R2.

Firstly let us observe that H2(x, y) = (1− a(1− ax2 + y)2 − bx,−b(1− ax2 + y)).

In order to obtain the eigenvalues of DH2(x, y) we are seeking for the roots of the

function det(DH2(x, y)− λI):

det(DH2(x, y)− λI) = det

 4a2x(1− ax2 + y)− b− λ −2a(1− ax2 + y)

2abx −b− λ

 =

=
(
4a2x(1− ax2 + y)− b− λ

)
(−b− λ) + 4a2bx(1− ax2 + y) =

= λ2 + (2b− 4a2x(1− ax2 + y))λ+ b2 = 0

Therefore using the Vieta’s formulas we get that: λ1 +λ2 = −2b+ 4a2x(1−ax2 +y)

and λ1λ2 = b2.

Theorem 12. Let a 6= 0.

If period doubling bifurcation connected with emerging of period 4 orbit occurs for

H(x, y), then it takes place for a, b fulfilling the relation a = (b+ 1)2 + 1
4
(b− 1)2.

Proof. Let λ1 and λ2 be the eigenvalues of DH2(x, y). Taking λ1 = −1 and using

the theorem 11 we obtain the following relation:

(b− 1)2 + 4a2x(1− ax2 + y) = 0 (3.9)

According to theorem 10 if (x, y) is a point belonging to period 2 orbit, then

(x, y) =

(
(b+ 1) +

√
4a− 3(b+ 1)2

2a
,−b

(b+ 1)−
√

4a− 3(b+ 1)2

2a

)
(3.10)
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or

(x, y) =

(
(b+ 1)−

√
4a− 3(b+ 1)2

2a
,−b

(b+ 1) +
√

4a− 3(b+ 1)2

2a

)
. (3.11)

Now putting (3.10) into (3.9) we obtain the following relation of the parameters a

and b:

a = (b+ 1)2 +
1

4
(b− 1)2 (3.12)

The same result (a = (b+1)2 + 1
4
(b−1)2) is obtained when we substitute (3.11) into

(3.9).

Remark 7. According to further numerical analyses we know that for H(x, y) a

period doubling connected with emerging of period 4 orbit occurs, hence the relation

a = (b+ 1)2 + 1
4
(b− 1)2 obtained in theorem 12 is also sufficient condition for period

doubling.

Further composing of the function H(x, y) and finding its periodic points would

be very problematic. That is why a software AUTO-07p was used to present relations

between parameters a and b corresponding to further period doubling (figure 6 and

figure 7). Let us notice that according to theorem 6 the interesting interval from the

point of view of attracting sets for parameter b is (−1, 1). According to the numerical

analysis for b ∈ (−1, 1) period-doubling is connected with successive emerging and

fading of attracting periodic orbit.
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Figure 6. State diagram of the Hénon map in (b,a) space. 10, 20, 40 indicate areas, where

attracting fixed point and attracting orbits of period 2 and 4 exist.

Figure 7. Enlarged view for b ∈ [0.136, 1.4] of the figure 6. 40, 80, 160, 320 indicate areas,

where attracting orbits of period 4, 8, 16 and 32 exist.
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Let us choose b ∈ (−1, 1). Increasing the parameter a we would find parameter

a1 such that period 2 orbit bifurcates from an attracting point. The value a1 =

3
4
(b+ 1)2 was analytically found in the theorem 9 and it is a first value of a, where

period doubling occurs. Raising the parameter a we would find a2 > a1 such that

period 2 orbit stops being attracting orbit, however attracting period 4 orbit emerge.

According to the theorem 12 a2 = (b+1)2 + 1
4
(b−1)2. The next value of parameter a

would be a3 > a2, where period 4 orbit stops being attracting and attracting period

8 orbit appears. This way we would create an infinity sequence of (an)n∈N.

In 1978 mathematical physicist Mitchell Jay Feigenbaum discovered that the

quotient

an−1 − an−2

an − an−1

tends to 4.669201609... as n increases. The number 4.669201609... is known as

Feigenbaum’s constant. The most surprising fact about that number is its univer-

sality. The Feigenbaum’s constant is the same for a wide range of one-parameter

maps, where period doubling occurs (e.g. logistic map - example 2), and also for

the Hénon map. [3]

The important consequence of existing of Feigenbaum’s constant is the fact that

the sequence (an)n∈N has a limit a∞. What is more, at a∞ the chaotic behaviour of

the map occurs.

Remark 8. Before we will start to examine bifurcation diagrams for H(x, y) with

b 6= 0 it is important to notice (easily from the form of H(x, y)) that if we detect:

• a fixed point of the projection on x-axis of the orbit under H(x, y), then the

orbit considered in R2 is a fixed point;

• a period orbit of the projection on x-axis of the orbit under H(x, y), then the

orbit considered in R2 is periodic;

• a chaotic orbit of the projection on x-axis of the orbit under H(x, y), then the

orbit considered in R2 is chaotic.
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Example 3. Obtaining an approximate value of Feigenbaum’s constant for b=0.138.

Figure 8. One branch of bifurcation diagram for b = 0.138. The continuous line indicates stable

(attracting) orbit and dotted line indicates unstable (non-attracting) orbit.
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According to theorem 9 the first value of a where period doubling occurs is a1 =

3
4
(1 + b)2 = 3

4
(1 + 0.138)2 = 0.971283. Using theorem 12 we obtain that a2 =

(b + 1)2 + 1
4
(b − 1)2 = (0.138 + 1)2 + 1

4
(0.138 − 1)2 = 1.480805. We may observe

that this result correspond with figure 8. Figure 8 was created with software AUTO-

07p. Moreover with this program the further bifurcation values (from a3 to a8) were

obtained. They are presented in the following table together with computed quotient
an−1 − an−2

an − an−1

.

n an
an−1 − an−2

an − an−1

3 1.5962728169 4.41267544

4 1.6215738572 4.56375768

5 1.6269794670 4.68051547

6 1.6281462245 4.63301911

7 1.6283830630 4.92638443

8 1.6284686426 2.76746444

Therefore obtained results are initially close to Feigenbaum’s constant till the com-

puting the quotient
a5 − a4

a6 − a5

. For further calculation
an−1 − an−2

an − an−1

differ severely from

4.669201609..., because of the approximation of a6, a7 and a8.
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Chapter 4

The coupled Hénon maps

In this chapter we will consider three bidirectionally coupled bistable Hénon maps.

4.1 Model

For the Hénon map there exist the area, where another period-doubling exists. That

period doubling is connected with an attracting period 3 orbit, which bifurcates and

looses its stability, but a new attracting period 6 orbit emerges and so on. Previously

considered period doubling, connected with a fixed point, exists for every b ∈ R.

Period 3 orbit exists only for a certain b (surely for b ∈ (0.134, 0.142) as it may

be observed in Figure 9). Figure 9 shows that those periodic orbits coexist. This

phenomenon of coexisting of two attractors is called bistability. Bistability is the

special case of multistability, i.e., the coexistence of n attractors.

In order to choose three different bistable Hénon maps, which parameters differ

slightly, state diagram created with AUTO-07p was used.
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Figure 9. State diagram of the Hénon map in (b,a) space. 20, 40 indicate attracting orbits of

period 2 and 4. 31, 61, 121 indicate attracting orbits of period 3, 6 and 12.

The parameter b = 0.138 was chosen for all three maps. To choose three different

values of parameter a in such a way to create three different bistable maps the

following bifurcation diagrams of Figure 10 have been analysed.
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Figure 10. Bifurcation diagrams and its enlargements for b=0.138 and a ∈ [1.48, 1.485]. Blue

dots show bifurcation diagram with initial value in the basin of attraction of period 2 orbit and red

dots represent bifurcation diagram with initial value in the basin of attraction of period 6 orbit.

Notice that Figure 10 corresponds to Figure 9. According to this result the following

bistable maps are considered in this chapter:

H2,6(x, y) = (1− 1.4807x2 + y,−0.138x),

H4,12(u, v) = (1− 1.482u2 + v,−0.138u),

H4,C(w, z) = (1− 1.4847w2 + z,−0.138w).

Figure 11-13 show the basins of attraction for the maps H2,6(x, y), H4,12(u, v) and

H4,C(w, z). These plots have been created using the software DYNAMICS FOR

WINDOWS 2.
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Figure 11. Basins of attraction for the map H2,6(x, y).

The cyan area is a basin of attraction of period 2 orbit (red dots), the pink area is a basin of

attraction of period 6 orbit (black dots) and the navy blue area includes points, which diverge

from the area of the picture (escape to infinity).
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Figure 12. Basins of attraction for the map H4,12(u, v).

The cyan area is a basin of attraction of period 4 orbit (red dots), the pink area is a basin of

attraction of period 12 orbit (black dots) and the navy blue area includes points, which diverge

from the area of the picture (escape to infinity).
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Figure 13. Basins of attraction for the map H4,C(w, z).

The cyan area is a basin of attraction of period 4 orbit (red dots), the pink area is a basin of

attraction of chaotic attractor (black dots) and the navy blue area includes points, which diverge

from the area of the picture (escape to infinity).
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Figure 14. Chaotic attractor occurring in H4,C(w, z).

Now we will consider the bidirectional coupling of the chosen maps H2,6(x, y),

H4,12(u, v) and H4,C(w, z) by introducing the coupling signals ε(z− y), ε(y− v) and

ε(v − z). Hence, we will obtain the following system:

xn+1 = 1− 1.4807x2
n + yn + ε(zn − yn),

yn+1 = −0.138xn,

un+1 = 1− 1.482u2
n + vn + ε(yn − vn),

vn+1 = −0.138un,

wn+1 = 1− 1.4847w2
n + zn + ε(vn − zn),

zn+1 = −0.138wn,

(4.1)

where ε (ε ∈ [0, 1]) is the strength of coupling.

Remark 9. If ε = 0, then H2,6(x, y), H4,12(u, v) and H4,C(w, z) are not coupled.
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4.2 Analyses of the coupling

Definition 23. Synchronization is a process where two or more systems, which are

either identical or non-identical, adjust a given property of their dynamics to a

common behaviour due to coupling. [1]

Throughout years of studying many different synchronization states were distin-

guished ([1], [10]), but we will focus on ideal synchronization and practical synchro-

nization.

Definition 24. Assuming that two systems are represented by two arbitrarily chosen

orbits {xn}n∈N, {yn}n∈N, the ideal synchronization takes place when {xn}n∈N,

{yn}n∈N converge to the same value and remain in step with each other during further

evolution (i.e., lim
n→∞

xn − yn = 0). [9]

Definition 25. Assuming that two systems are represented by two arbitrarily chosen

orbits {xn}n∈N, {yn}n∈N, the practical synchronization means that for {xn}n∈N,

{yn}n∈N occurs lim
n→∞

|xn − yn| ≤ δ, where δ is small parameter. [9]

Remark 10. It is important to note that bifurcation diagrams presented in this sec-

tion aren’t reinitialized for each ε. It means that if for a certain parameter ε1 the

last iteration of x is equal to x0, then for ε2 calculated in the next step of procedure

the initial value for x is equal to x0. This way we may investigate the evolution of

obtained attractor for increasing ε.

Remark 11. We say that more than two systems are synchronized if all systems are

synchronized with each other.

In this section we will analyse the behaviour of the system (4.1) with different

initial values for ε = 0. Firstly we will consider the case, where H2,6(x, y) has its

initial value on period 2 orbit, H4,12(u, v) has its initial value on period 4 orbit and

H4,C(w, z) has its initial value on period 4 orbit. We will notice that the results

varies depending on the initial position on attractor. The second considered case

will be H2,6(x, y) with initial value on period 6 orbit, H4,12(u, v) with initial value

on period 12 orbit and H4,C(w, z) with initial value on chaotic attractor.
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Example 4. H2,6 in period 2, H4,12 in period 4, H4,C in period 4

We will analyse the bifurcation diagrams for the map (4.1) shown in Figure 15-

17, where the coupling strength ε is the bifurcational parameter. For ε = 0 we start

from the following initial conditions: x0 = 0.8665180648, y0 = 0.01340043371, u0 =

0.8720318149, v0 = 0.01094848768, w0 = 0.8760190573 and z0 = 0.008883582048.

Figure 15. The bifurcation diagram of variable x versus the coupling strength ε.

Figure 16. The bifurcation diagram of variable u versus the coupling strength ε.
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Figure 17. The bifurcation diagram of variable w versus the coupling strength ε.

In Figure 15 one can see that the period 2 orbit bifurcates to period 4 orbit for ε > 0.

(a)

(b)

Figure 18. The basins of attraction for H2,6(x, y) with (a) ε = 0 and (b) ε = 0.001.
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Figure 18(a) shows the basin of attraction (white area) of period 2 orbit (red dots)

for H2,6(x, y) with ε = 0. Figure 18(b) presents the basin of attraction (white area)

of the previous period 2 orbit, which have already bifurcated to period 4 orbit (red

dots), for H2,6(x, y) with ε = 0.001. It is worth noting that in Figure 18(b) also

another period 4 orbit emerges (yellow dots), which basin is shown as the turquoise

area. As might be seen in Figure 16 and 17 period 4 orbits remain period 4 orbits,

while ε is increased.

Now, we will consider the diagrams of the differences x−u, u−w and w−x versus

the coupling strength ε in order to find synchronization.

Figure 19. The diagram of the difference x− u versus the coupling strength ε.

Figure 20. The diagram of the difference u− w versus the coupling strength ε.
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Figure 21. The diagram of the difference w − x versus the coupling strength ε.

Analysing the above figures we may conclude that the considered maps are prac-

tically synchronized for ε ∈ (0, 1], because for every ε ∈ (0, 1] there exist δ ≤ 0.028

such that lim
n→∞

|xn − un| ≤ δ, lim
n→∞

|un − wn| ≤ δ and lim
n→∞

|wn − xn| ≤ δ. What is

more, it should be observed that δ = 0.028 may be considered as small, because it is

only approximately 3 percent of the range of x, u, w in Figure 15, 16 and 17.
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In the further analysis we will considered the so-called Lyapunov exponents.

Definition 26. Lyapunov exponents of the map f : Rk → Rk are numbers defined

as:

λi = lim
n→∞

1

n
ln |σi(n)|,

where σi(n) are eigenvalues of the matrix Df n(x0).

There exists a set of k Lyapunov exponents. Ordering the set {λi} (i = 1, .., k)

according to less-equal relation we obtain so-called spectrum of the Lyapunov

exponents. A simplified form of the set {λi} is the spectrum of the signs of

Lyapunov exponents, defined as a set of +, 0, -, which means positive, zero and

negative values of the exponents λi. [10]

According to [10] the following relation between spectrum of the signs of Lyapunov

exponents and attractor type occurs:

Spectrum of the signs of Lyapunov exponents Type of attracting set

(-, -, ..., -) fixed point

(-, -, ..., -) periodic orbit

(+, ..., +, -, ..., -) chaotic attractor
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Example 5. H2,6 in period 2, H4,12 in period 4, H4,C in period 4

Calculating the bifurcation diagrams of Figure 22-24 we start with the follow-

ing initial conditions for ε = 0: x0 = 0.8665180648, y0 = 0.01340043371, u0 =

−0.07933686728, v0 = −0.1186399754, w0 = −0.1304891380 and z0 = −0.1208906299.

Figure 22. The bifurcation diagram of variable x versus the coupling strength ε.

Figure 23. The bifurcation diagram of variable u versus the coupling strength ε.
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Figure 24. The bifurcation diagram of variable w versus the coupling strength ε.

Now, let us notice that Lyapunov exponents correspond system behaviour shown in

Figure: 22, 23 and 24.

Figure 25. The Lyapunov exponents versus the coupling strength ε.

The red line indicate λ = 0.
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Figure 26. The diagram of the difference x− u versus the coupling strength ε.

Figure 27. The diagram of the difference u− w versus the coupling strength ε.

Figure 28. The diagram of the difference w − x versus the coupling strength ε.
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According to Figure 26, 27 and 28 we find ε∗ ≈ 0.74 such that for every ε ∈ [ε∗, 1]

we obtain very effective practical synchronization with δ . 0.0024. It is also worth

noting that for ε ∈ (0, ε∗) maps are not synchronized.

Example 6. H2,6 in period 6, H4,12 in period 12, H4,C in chaotic attractor

Calculating the bifurcation diagrams of Figure 29-32 we start with the follow-

ing initial conditions for ε = 0: x0 = 1.092584689, y0 = 0.01542643645, u0 =

1.090201829, v0 = 0.01654230768, w0 = 1.088825968 and z0 = 0.01710160090.

Figure 29. The bifurcation diagram of variable x versus the coupling strength ε.

Figure 30. Enlargement of Figure 29.
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In Figure 30 a set of parameter values, where periodic orbit occurs, might be

observed. According to [3] it is so-called ’periodic window’.

Figure 31. The bifurcation diagram of variable u versus the coupling strength ε.

Figure 32. The bifurcation diagram of variable w versus the coupling strength ε.

We may observe that Figure 29, 31 and 32 present evolution of chaotic attractors

with emerging ’periodic windows’.
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Figure 33. The diagram of the difference x− u versus the coupling strength ε.

Figure 34. The diagram of the difference u− w versus the coupling strength ε.
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Figure 35. The diagram of the difference w − x versus the coupling strength ε.

It may be observed that there occurs practical synchronization with δ ≤ 0.04,

which may be called small, because δ = 0.04 is approximately 2 percent of the range

of x, u, w in Figure 29, 31 and 32.

45



Dynamics of the coupled Hénon maps

Example 7. H2,6 in period 6, H4,12 in period 12, H4,C in chaotic attractor

Calculating the bifurcation diagrams of Figure 36-38 we start with the follow-

ing initial conditions for ε = 0: x0 = −0.1117857714, y0 = 0.1110876031, u0 =

−0.1064446881, v0 = 0.1107446682, w0 = 0.0305064123 and z0 = 0.1025100836.

Figure 36. The bifurcation diagram of variable x versus the coupling strength ε.

Figure 37. The bifurcation diagram of variable u versus the coupling strength ε.
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Figure 38. The bifurcation diagram of variable w versus the coupling strength ε.

Figure 39. The diagram of the difference x− u versus the coupling strength ε.
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Figure 40. The diagram of the difference u− w versus the coupling strength ε.

Figure 41. The diagram of the difference w − x versus the coupling strength ε.
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We may notice that for ε ≈ 0.558 the behaviour of the discussed model changes.

For ε . 0.558 maps (4.1) are not synchronized, but for ε & 0.558 we obtain practical

synchronization with δ ≤ 0.022. δ ≤ 0.022 may be called small, because it is only

approximately 1 percent of the range of x, u, w in Figure 36, 37 and 38.

Let us notice that the rapid decrease of largest Lyapunov exponent to zero indi-

cates synchronization.

Figure 42. The Lyapunov exponents versus the coupling strength ε.

The red line indicate λ = 0.

According to [1] the points of practically synchronized systems would be situated

close to the manifolds x ≡ u, u ≡ w and w ≡ u. Hence, let us notice in dia-

grams showing relation between x and u, u and w, w and x (Figure 43, 44 and

45) that indeed for ε = 0.55 maps are not synchronized and for ε = 0.57 they are

synchronized.
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(a) (b)

Figure 43. The projection on the plane (x, u) of attractor for (a) ε = 0.55, (b) ε = 0.57.

(a) (b)

Figure 44. The projection on the plane (u,w) of attractor for (a) ε = 0.55, (b) ε = 0.57.
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(a) (b)

Figure 45. The projection on the plane (w, x) of attractor for (a) ε = 0.55, (b) ε = 0.57.

Example 8. H2,6 in period 6, H4,12 in period 12, H4,C in chaotic attractor

Calculating the bifurcation diagrams of Figure 46-48 we start with the follow-

ing initial conditions for ε = 0: x0 = −0.1117857714, y0 = 0.1110876031, u0 =

−0.8024975960, v0 = −0.1520331437, w0 = −0.8017949381 and z0 = −0.1518078345.

Figure 46. The bifurcation diagram of variable x versus the coupling strength ε.
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Figure 47. The bifurcation diagram of variable u versus the coupling strength ε.

Figure 48. The bifurcation diagram of variable w versus the coupling strength ε.
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Figure 49. The diagram of the difference x− u versus the coupling strength ε.

Figure 50. The diagram of the difference u− w versus the coupling strength ε.
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Figure 51. The diagram of the difference w − x versus the coupling strength ε.

Analysing Figure 49, 50 and 51 we may find ε∗ ≈ 0.74 such that for every

ε ∈ [ε∗, 1] we obtain very effective practical synchronization with δ . 0.0024. It is

also worth noting that for ε ∈ (0, ε∗) maps are not synchronized.

Example 9. H2,6 in period 6, H4,12 in period 12, H4,C in chaotic attractor

Calculating the bifurcation diagrams of Figure 52-54 we start with the follow-

ing initial conditions for ε = 0: x0 = 0.8665180648, y0 = 0.01340043371, u0 =

−0.1064446776, v0 = 0.1107446677, w0 = −0.7991752643 and z0 = −0.1516632986.

Figure 52. The bifurcation diagram of variable x versus the coupling strength ε.
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Figure 53. The bifurcation diagram of variable u versus the coupling strength ε.

Figure 54. The bifurcation diagram of variable w versus the coupling strength ε.
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Figure 55. The diagram of the difference x− u versus the coupling strength ε.

Figure 56. The diagram of the difference u− w versus the coupling strength ε.
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Figure 57. The diagram of the difference w − x versus the coupling strength ε.

Analysing Figure 55, 56 and 57 we may find ε∗ ≈ 0.74 such that for every

ε ∈ [ε∗, 1] very effective practical synchronization with δ . 0.0024 is obtained. For

ε ∈ (0, ε∗) maps are not synchronized.

It might be observed that in every analysed case for far initial conditions we

obtain the same parameter ε∗ and δ.
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Example 10. We will investigate now a different model, which couples three maps

previously introduced as H12,C.:



xn+1 = 1− 1.4847x2
n + yn + ε(zn − yn),

yn+1 = −0.138xn,

un+1 = 1− 1.4847u2
n + vn + ε(yn − vn),

vn+1 = −0.138un,

wn+1 = 1− 1.4847w2
n + zn + ε(vn − zn),

zn+1 = −0.138wn,

(4.2)

where ε is the strength of coupling and ε ∈ [0, 1].

Behaviour of the model (4.2) will be examined for initial values in the chaotic

attractor, i.e., x0 = 1.088483611, y0 = 0.01725281117, u0 = 1.088386849, v0 =

0.01729527084, w0 = 1.088825968, z0 = 0.01710160090.

Figure 58. The bifurcation diagram of variable x versus the coupling strength ε.

58



Dynamics of the coupled Hénon maps

Figure 59. The bifurcation diagram of variable u versus the coupling strength ε.

Figure 60. The bifurcation diagram of variable w versus the coupling strength ε.
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Figure 61. The diagram of the difference x− u versus the coupling strength ε.

Figure 62. The diagram of the difference u− w versus the coupling strength ε.
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Figure 63. The diagram of the difference w − x versus the coupling strength ε.

It may be observed that there occurs practical synchronization with δ ≤ 0.1, which

may be called small, because δ = 0.1 is approximately 5 percent of the range of x, u,

w in Figure 58, 59 and 60.

Behaviour of the model (4.2) changes when positions of initial values on the

attractor is different. That is why (4.2) will be examined for initial values in

chaotic attractor, but with a different positions on the attractor than in the previ-

ously analysed case. Hence we choose: x0 = 0.0370157744, y0 = 0.1021088882, u0 =

−0.7991752643, v0 = −0.1516632986, w0 = −0.8017949381, z0 = −0.1518078345.

Figure 64. The bifurcation diagram of variable x versus the coupling strength ε.
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Figure 65. The bifurcation diagram of variable u versus the coupling strength ε.

Figure 66. The bifurcation diagram of variable w versus the coupling strength ε.
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Figure 67. The diagram of the difference x− u versus the coupling strength ε.

Figure 68. The diagram of the difference u− w versus the coupling strength ε.
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Figure 69. The diagram of the difference w − x versus the coupling strength ε.

The evolution of the considered case might be seen also by analysing Lyapunov

exponents:

Figure 70. The Lyapunov exponents versus the coupling strength ε.

The red line indicate λ = 0.

For ε & 0.74 we obtain ideal synchronization. The ideal synchronization is indeed

possible here, due to the fact that we have coupled identical maps.
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Conclusions

The Hénon map is a system, which is defined with an easy quadratic equation.

Contrary to the possible expectations there are many properties of discussed system,

which cannot be proven analytically. That is the reason why in the thesis wide

range of numerical analysis was performed. Those numerical analysis show that

there are parameters for which the Hénon map is bistable. What is more numerical

analyses enabled us to examine different bifurcations and finally the occurrence of

the synchronization.

The main conclusion of the performed thesis is the fact that the properties of the

coupled maps drastically changes when the position on the attractor for uncoupled

system is varied. For ε = 0 coupled maps are iterated till model (4.1) (or (4.2)) is in

attractor. That is the reason why synchronization (or its lack) depends on position

on attractor in the moment when ε is changed. For each coupling of non-identical

maps if the synchronization is obtained, it is always the practical synchronization.

For the coupled identical maps the ideal synchronization may be obtained.
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[9] Stefański A., Kapitaniak T., Synchronization of mechanical systems driven by

chaotic or random excitation, Journal of Sound and Vibration, 2003.
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