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Chapter 1

Introduction

The word pendulum comes form a Latin word pendulus which means "hanging". The
pendulum has played great role in development of Western science and culture. First
scienti�c observations of pendulum are often associated with Galileo Galilei (1554-
1642). According to the story told (being perhaps apocryphal) Galileo observed the
motion of swinging chandeliers in the cathedral of Pisa and using his heartbeat as a
time measure noticed that even though the amplitude was diminishing the time of each
swing was consistent[2]. Since that times the scienti�c observations of pendulum and
its application in mechanisms, such as clocks or metronome (the example of reversed
pendulum), progressed.

Although a single pendulum seems like a simple system a set of pendulums can
exhibit very complex behaviour. A double pendulum is an example of such a system,
being in its nature a simple dynamical system but also being capable of exhibiting
complex behaviour, including chaos.

With a set of two or more pendulums a phenomena of synchronization can be
observed. A word synchronization comes from a greek root sunkhronos that means
"to share a common time". Historically the analysis of synchronization within the
dynamical systems area has been studied since the earlier days of physics. It started
in 17th century with the �nding of Huygens that two pendulum clocks, coupled by
hanging on the same beam become synchronised in phase.[4] He originally thought that
the synchronization occurs due to air currents shared by both pendulums, but later
after several tests attributed the occurrence of the phenomena to the imperceptible
motion of the beam from which both of the pendulum clocks were suspended.[3]
Recently, the search of synchronization has moved to chaotic systems. In order to
perform the analysis, the model of the system must be derived.

Achievements of Lagrange and Hamilton among the others make it possible to
construct very complicated models describing behaviour of di�erent mechanical devices
or physical phenomena. The models then can be calculated, often numerically allowing
to test the systems without need to build the physical model and risk its damage in
case of failures.
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1.1 Aim of the thesis

The aim of the thesis is to investigate the process of synchronization of two double
pendulums coupled through elastic structure. The analysis of the behaviour of the
considered system is performed basing on the bifurcation diagrams, phase portraits
and Poincar'e maps. Numerical calculations are performed by written beforehand
C++ program. Equations of the system motion is derived by mean of the Lagrange
method. The purpose of the analysis is to the system's behaviour for di�erent fre-
quency and amplitude of the excitation. Finally, the in�uence of parameters changes
on synchronization of the pendulums is investigated.

1.2 De�nitions

In this section de�nitions of terms used in this thesis will be presented.

De�nition 1. Considering a following set of di�erential equations

dx

dt
= f(x), x(t0) = x0, (1.1)

where vector function
f : D → Rn,

is continuos with respect to time t and variable x, D is an open subset Rn+1, x ∈
Rn, t ∈ R. Equation set 1.1 is called n-dimensional autonomous set of equa-

tions, because time does not occur explicitly on the right hand side of equations.
Similarly the set of equations

dx

dt
= f(x, t), x(t0) = x0, (1.2)

in which time occurs explicitly on the right hand side of the equations, is called
n-dimensional autonomous set of equations. The subset D is called a phase
space. If there exists T>0 such, that

f(x, t) = f(x, t = T )

for every x and to, then the set of equations 1.2 is called periodic with a period
of T [5].

De�nition 2. A dynamical system described by set of equations 1.1 is the
mapping

Φ : R×D → Rn,

de�ned by solution x(t) of the set of equations 1.1 [5].

De�nition 3. A function f representing the right hand side of the set of equations
1.1 de�nes the mapping f

f : D → Rn,

de�ning the vector �eld in Rn In order to show the dependancy of solution of set
of equations 1.1 on the initial condition in an explicit way, the solution is often
written in the form Φt(x0) [5].
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De�nition 4. The mapping

Φt : D → Rn

is called the phase �ow [5].

De�nition 5. Consider the autonomous case of the equation 1.1 written in the
following form

dx1

dt
= fi(x), i = 1, 2, ..., n.

If f1(x) 6= 0, then the x1 component of the vector x can be taken as a new inde-
pendent variable. The following set of equations will be obtained

dx2

dx1

=
f2(x)

f1(x)

...

dxn
dx1

=
fn(x)

f1(x)

(1.3)

The solution of the equations 1.3 in a phase space is called the trajectory (an
orbit) of a system.[5]

De�nition 6. A minimal subset A in phase space of an equation f : Rn × R →
Rn, t ∈ R, which is reachable asymptotically by the trajectory x(t), when t →
∞(t → −∞), is called an attractor (negative attractor). The concept of at-
tractor is shown on the Figure 1.1. For every attractor A there exists subset b(A),
such that for ever x0 ∈ b(A) the phase trajectory x(t) that begins in x0 tends to A
when t → ∞. Subset b(A) is called the basin of attraction of attractor A. For
negative attractor b(A) has the aforementioned property for t→ −∞. [5]

Figure 1.1: Attractor A and its basin of attraction b(A)

De�nition 7. The subset A is called asymptotically stable attractor, if for every
su�ciently small neighbourhood U(A) exist such neighbourhood V (A), that for
every x0 ∈ U(A), the phase trajectory x(t) thet begins in x0 stays in V (A) for
every t, and the distance of the point x(t) from the attractor A tends to zero for
t→∞. The de�nition of asymptotical stability of the attractor A shows, that the
basin of attraction of such attractor contains its neighbourhood. The di�erence
between stable and statically stable attractor shows the picture 1.2. [5]
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Figure 1.2: Attractors: a) stable; b) asymptotically stable

De�nition 8. In a general case let x = Φ(t) be the solution of the system 1.1 and
let there be such constant T , that

Φ(t) = Φ(t+ T )

for every t, then Φ(t) is called the periodical solution of a period T . The closed
curve in the phase space corresponds to the periodical solution, and such closed
phase trajectory implies the periodical solution. [5]

De�nition 9. The periodical solution of the autonomous system 1.1, that are
attractors or negative attractors, are called also limit cycles. If a limit cycle is
available through the solution when t → ∞, then it is statical and an attractor.
If the limit cycle has this property for t → −∞, then it is unstable and is an
unstable, negative attractor. [5]

De�nition 10. Iterations of the map mapping given interval on the same interval
are the simplest examples of nonlinear, dissipative dynamical systems. Iterations
of a form

xn → xn+1 = f(xn), (1.4)

where f : [−1, 1] → [−1, 1], n = 1, 2, ..., and x0 is given throughout the initial
condition x̄0 can be treated as discrete time equivalent of dynamical systems with
continuous time. In mapping 1.4 - n corresponds to the variable describing time
[5].

Figure 1.3: Poincaré map construction

4



De�nition 11. Assuming there is a dynamical system under consideration, which
is autonomically described by the equation

dx

dt
= f(x). (1.5)

where

f : Rn × R→ Rn, t ∈ R, x ∈ Rn

has limit cycle as shown in the Figure 1.3. Let x∗ be a point lying on a limit cycle
Γ and let Σ be (n−1)-dimensional plane transversally cutting (i.e. all trajectories
of phase �ow Φ0(x) going through all of the points S ∈ Σ and none of them lays on
Σ) a limit cycle in point x∗. The phase trajectory that begins in the point x∗ will
again cut the Σ plane after time T equal to limit cycle period. Phase trajectories
that begin in a suitably small neighbourhood of the point x∗−S0 ∈ Σ after time τ(x)
(this time may be di�erent from T ) are on the Σ plane in di�erent neighbourhood
x ∗ −S1 ∈ Σ, i.e. in a set of points

S1 = {Φτ(x)(x)|x ∈ S0}.

Therefore equation 1.4 and the Σ plane de�ne the mapping Π,

Π : S0 → S1 : x 7→ Φτ(x)(x) (1.6)

is called the Poincaré map. This mapping describes the behaviour of the phase
�ow in the function of discrete time on submanifold Σ, whose dimension is minus
one smaller than the dimension of the manifold, on which the dynamical system
1.4 is de�ned [5].

De�nition 12. Bifurcation takes place when solution of nonlinear di�erential
equation

dx

dt
= f(x, µ), (1.7)

qualitatively changes its character along with the changes of the parameter µ. Value
of parameter µ = µc, for which the change takes place is called the point of

bifurcation [5].

De�nition 13. Saddle-node bifurcation. As an example of a type of bifurcation
consider the system described by the following equation

dx

dt
= a− x2, (1.8)

where x ∈ Z. The critical points (the points that correspond to the equilibrium
position of the system) of the system 1.8 are

x1,2 = ±
√
a

Because only the real points are the only ones that are considered it easily visible
that for a > 0 there are two critical points, for a = 0 one, and for a < 0 the
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equation 1.8 has no critical points. The equation 1.8 can be analytically integrated
can by presented in a form

x(t) =



√
a
x0 +

√
a tanh(

√
at)√

a+ x0 tanh(
√
at)

,

x0

1 + x0t
,

√
−ax0 −

√
−a tanh(

√
−at)√

−a+ x0 tanh(
√
−at)

,

for a > 0

for a = 0

for a < 0

(1.9)

In the equation 1.9 x0 = x(0) is the initial condition. Analysing the course of the
variability of the function of solution of x(t) it can be noticed, that

lim
t→∞

x(t) =
√
a, when: a > 0, x0 > −

√
a

lim
t→∞

x(t) = −
√
a, when: a > 0, x0 < −

√
a

lim
t→∞

x(t) = 0, when: a = 0, x0 > 0,

and
lim
t→ 1

x0

x(t) = −∞, when: a = 0, x0 < 0

lim
t→
√
a arctanh

−
√

a
x0

x(t) = −∞, when: a > 0, x0 < −
√
a

lim
t→
√
−a arctanh

−
√
−a

x0

x(t) =∞, when: a > 0, x0 < 0.

The properties of the solution 1.9 are presented on the Figure 1.4 From the above

Figure 1.4: Saddle-node bifurcation

analysis it results, that the number of critical points changes, when the value of
parameter a goes through 0, and that the stability of the critical points changes,
when x = ±

√
a goes through zero. This type of bifurcation is called the saddle-

node bifurcation. [5]
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De�nition 14. The Hopf bifurcation occurs when a critical point loses its sta-
bility, resulting in occurrence of periodic solution (limit cycle). Such bifurcation
can be explained by an exemplary set of di�erential equations

dx

dt
= −y + (a− x2 − y2)x

dy

dt
= x+ (a− x2 − y2)y

(1.10)

where a ∈ R. Assuming
dx

dt
=
dy

dt
= 0

it can be shown, that (x, y) = (0, 0) is the critical point. By linearisation of the
equation 1.10 in the neighbourhood of the critical point gives

dx

dt
= −y + ax

dy

dt
= x+ ay

(1.11)

The solution of linearised system 1.11 is the linear combination of the functions

x(t) = eλtu

y(t) = eλtv,

that ful�l the equation
Au = su,

where s is an eigenvalue, u = [u, v]T are eigenvectors, and A is a matrix of the
form

A =

[
a −1
1 a

]
.

Therefore

0 = det(A− sI) =

∣∣∣∣ a− s −1
1 a− s

∣∣∣∣ = (a− s)2 + 1, (1.12)

THe solution x = y = 0 of the linearised system is stable, when

Re(s1,2) < 0,

i.e. when a < 0, and unstable when a > 0. The form of set of equations 1.10
was chosen in such a way, so that it is possible to obtain an analytical solution.
Introducing polar coordinates x = r cos Θ, y = r sin Θ for r > 0 it can be easily
shown, that x+ iy = r exp iΘ. Multiplying second one of equations 1.10 by i, and
subsequently adding it to the �rst equation, the following formula is obtained

d(reiΘ)

dt
=
dx

dt
+ i

dy

dt
= −y + ix+ (a− x2 − y2)(x+ iy) (1.13)

or (
dr

dt
+ ir

dΘ

dt

)
eiΘ = ireiΘ + (a− r2)reiΘ.
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Dividing both sides of this equation by exp(iΘ) and comparing the real and imag-
inary parts on both sides of the equation the yields

dr

dt
= r(a− r2)

dΘ

dt
= 1

(1.14)

Hence

r2(t) =

 ar02

r02+(a−r02)e−2at

r02

1+2r02t

a 6= 0

a = 0,
(1.15)

and

Θ = t+ Θ0, r0 = r(0), Θ0 = Θ(0).

The solution 1.15 can be presented in a form of phase trajectory

x = (x(t), y(t))

on a plane, assuming the Cartesian coordinate system. For a 6 0, all phase
trajectories x(t) → 0, when t → ∞ and the point x(0, 0) is the attractor. The
behaviour of the trajectories in this case is shown on the Figure 1.5 However for

Figure 1.5: The behaviour of the phase trajectories before Hopf bifurcation

a > 0 point x(0, 0) becomes a negative attractor and new stable solution being a
limit cycle appears

x =
√
a cos(t+ Θ0)

y =
√
a sin(t+ Θ0)

Such solution is shown on the Figure 1.6 All phase trajectories that begin in an
arbitrary point of the phase space other than x(0, 0) tend to the periodic trajectory,
in this case described by

x2 + y2 = a.

Described Hopf bifurcation is the supercritical bifurcation, i.e. stable limit cycle
substitutes stable critical point, when a goes through 0. In case of this bifurcation
the real part of the couple of complex eigenvalues λ1,2 changes the sign from minus
to plus, when a goes through the critical value a0 and as a result the critical point
becomes substituted by the limit cycle, as shown on the Figure 1.7.[5]
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Figure 1.6: The behaviour of the phase trajectories after Hopf bifurcation

Figure 1.7: Limit cycle created as a result of Hopf bifurcation

De�nition 15. Neimark-Sacker bifurcation is the birth of a closed invariant
curve from a �xed point in dynamical systems with discrete time (iterated maps),
when the �xed point changes stability via a pair of complex eigenvalues with unit
modulus.

Consider a map
x 7→ f(x, α), x ∈ Rn (1.16)

depending on the parameter α ∈ R, where f is smooth. Suppose that for all
su�ciently small |α| the system has a family of �xed points x0(α). Further Assume
that it's Jacobian matrix A(α) = fx(x

0(α), α) has one pair of complex eigenvalues
λ1,2(α) = r(α)e±iθ(α) on the unit circle when α = 0, i.e., r(0) = 1 and 0 <
θ(0) < π. Then, generically as α passes through α = 0, the �xed point changes
stability and a unique closed invariant curve bifurcates from it. This bifurcation
is characterized by a single bifurcation condition |λ1,2| = 1 (has codimension one)
and appears generically in one-parameter families of smooth maps.

De�nition 16. Synchronization of chaos refers to the process where two (or
more) chaotic systems, which are either equivalent or non-equivalent, adjust a
given property of their motion to a common behaviour due to coupling or a ex-
citation (periodical or noisy). There are many di�erent synchronization states
distinguished [4].

De�nition 17. Complete synchronization [4] is the perfect hooking of the
trajectories of two systems, achieved by means of a coupling signal, in sauch a
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way that they remain in step with each other in the course of time. Assuming
that two systems are represented by phase trajectories x(t) and y(t), the complete
synchronization takes place if the following relation is true for all t > 0:

lim
t→∞
|x(t)− y(t)| = 0. (1.17)

De�nition 18. Phase synchronization [4] is reached when a locking of phase
is produced, when correlation of amplitudes remain weak. By the de�nition phase
synchronization takes place when two systems represented by the phases ϕ1,2 with
ratio n : m (n and m are integers) of two systems are locked, which means that

|nϕ1 −mϕ2| < const. (1.18)

As a result of phase synchronization, the frequencies ωi = ϕi are also locked, i.e.

nω1 −mω2 = 0.
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1.3 Methods of analysis of the system's dynamics

There is a number of methods that can be useful when it comes to analysis of the
dynamics systems. The ones employed to analysis of this systems are:

• Phase portrait

• Poincaré Map

• Bifurcation Diagram

Phase portrait is simply a projection of phase trajectory (de�nition 5) on the
phase plane. The shape of the phase portrait gives information about system be-
haviour. The closed loop shape of the phase portrait indicates the periodic behaviour
of the system whereas non regular open shape may suggest chaotic behaviour.

Poincaré map, as de�ned previously (see de�nition 11), supplies information
helpful in recognising whether the behaviour of the system under consideration is
periodic, quasiperiodic or (hyper)chaotic. The single point plotted on a map implies
periodic behaviour. If the map presents a closed loop shape, the system's behaviour
is quasiperiodic. Chaotic behaviour may be suggested by a fractal structure created in
the plot, hyperchaotic behaviour is indicated by irregular points.

Bifurcation diagram can be described as a collection of Poincaré maps for chang-
ing bifurcation (or control) parameter. The Poincaré maps are projected on a x − y
coordinate system, where x-axis corresponds to the values of the control parameter
and on y-axis is a selected variable which describes the system. The analysis of the
bifurcation diagram is analogical as for Poincaré maps. Single point for a given control
parameter value means that the behaviour is periodic. A collection of points distributed
regularly implies quasiperiodic behaviour whereas an irregularly distributed collection
of points can suggest (hyper)chaos.
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Chapter 2

Creation of Model

2.1 Examined system: two double pendulums cou-

pled by a sti� beam

Figure 2.1: Two double pendulums coupled by a beam

The examined system is composed of two double pendulums similar to each other
in a way that for the upper pendulums rod lengths l1 and masses m1 are the same.
Similarly for lower left and right pendulum lengths l2 and masses m2 have the same
value.

The mathematical model of the following system can be derived by applying the
method of Lagrange equations, which in this case is:

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
+
∂D

∂q̇j
+
∂V

∂qj
= Qj (2.1)

where qj is a generalized displacement, which in this case is x - a linear displacement
of the beam and angular displacement of the pendulum φj. T is a kinetic energy of
the system, whereas V is its potential energy. D is a Rayleigh dissipation function
connected in this case to the damping of the beam cb and damping at nodes of
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pendulums c1, c2, c3, c4. The beam is also subjected to horizontal dynamic excitation
F (ωt).

2.2 Derivation of the model

In order to obtain the equations of motion, basing on Lagrange equations 2.1 the
kinetic and potential energy for each of the system's component must be found. For
the beam component the kinetic energy is simply:

T =
1

2
m3ẋ

2 (2.2)

The potential energy of the beam comes from the spring of sti�ness k the beam is
attached to:

V =
1

2
kx2 (2.3)

In order to determine the kinetic and potential energy of the pendulums only one pair
of the pendulums will be analysed (Figure 2.2). Formulae for energies for the second
pair will be analogical, depending on the corresponding displacements.

Figure 2.2: System composed of a double pendulum
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Analysing the �rst pendulum, the general formula of kinetic energy is:

T =
1

2
mṙ2 (2.4)

where r is a displacement. In case of the pendulum, the displacement can be
decomposed into two displacement vectors, horizontal rjx and vertical rjy. In this
case, because

rj =
√
rjx2 + rjy2

and

ṙj =
√
ṙ2
jx + ṙ2

jy

the equation 2.4 takes the following form:

Tj =
1

2
mj(ṙ

2
jx + ṙ2

jy) (2.5)

In case of the upper pendulum, resulting from the trigonometric dependancies, and
also taking into consideration a horizontal displacement x of a beam the pendulum is
attached to:

r1x = x+ l1 sinφ1 (2.6)

r1y = l1 cosφ1 (2.7)

The displacement components for lower pendulum have to be taken in respect to
point of attachment of the �rst pendulum, hence the r1x and r2y have to be added
respectively:

r3x = r1x + l2 sinφ3

r3y = r1y + l2 cosφ3

After substitution the equations take the following form:

r3x = x+ l1 sinφ1 + l2 sinφ3 (2.8)

r3y = l1 cosφ1 + l2 cosφ3 (2.9)

After di�erentiation the velocity components for those pendulums can be obtained:

ṙ1x = ẋ+ l1φ̇1 cosφ1

ṙ1y = −l1φ̇1 sinφ1

ṙ3x = ẋ+ l1φ̇1 cosφ1 + l2φ̇3 cosφ3

ṙ3y = −l1φ̇1 sinφ1 − l2φ̇3 sinφ3

(2.10)

For the second pair of pendulums the velocity components have analogical form, only
with corresponding angles φ2 and φ4 instead of φ1 and φ3.

Since the kinetic energy of the system is equal to sum of kinetic energies of indi-
vidual components, the kinetic energy of this system has the following form:

T =
1

2

[
m1

(
ṙ2

1x + ṙ2
1y + ṙ2

2x + ṙ2
2y

)
+m2

(
ṙ2

3x + ṙ2
3y + ṙ2

4x + ṙ2
4y

)
+m3ẋ

]
(2.11)

After substituting velocity components of pendulums into equation 2.11 the fol-
lowing formula is obtained:

T = 1
2
m3ẋ

2 +m1ẋ
2 +m1ẋl1φ1 cosφ1 + 1

2
m1l

2
1φ̇

2
1 +m1ẋl1φ̇2 cos Φ2 + 1

2
m1l

2
1φ̇

2
2+

+m2ẋ
2 +m2ẋ

2l1φ̇1 cosφ1 +m2ẋl2φ̇3 cosφ3 + 1
2
m2l

2
1φ̇

2
1 +m2l1l2φ̇1φ̇3 cos(φ1 − φ3)+

+1
2
m2l

2
2φ̇

2
3 +m2ẋl1φ̇2 cosφ2 +m2ẋl2φ̇4 cosφ4 + 1

2
m2l

2
1φ̇

2
2 +m2l1l2φ̇2φ̇4 cos(φ2 − φ2)+

+1
2
m2l2φ̇4

(2.12)
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Figure 2.3: System composed of two pendulums - potential energy

Next step is �nding the potential energy for pendulums and the beam. In case of
the beam it is a potential energy of the spring, which is equal to

Vb =
1

2
kx2

As for the pendulums, one again only one pair will be considered for now and the energy
for the second pair will be derived by analogy. The potential energy for pendulums
will be derived from well known equation:

V = mgh

In case of upper pendulum, the height h1, as visible on Figure 2.3 is equal to:

h1 = l1 − l1 cosφ1

Hence the potential energy for the �rst pendulum is equal to:

V1 = m1gl1(1− cosφ1) (2.13)

Analogically, h3 of the second pendulum is equal to:

h3 = l2 − l2 cosφ3

Taking into consideration h1 the formula for potential energy is as follows:

V3 = m2g(l1 − l1 cosφ1 + l2 − l2 cosφ3) (2.14)

Analogically, for the second pair of pendulums:

V2 = m1gl1(1− cosφ2), (2.15)

V4 = m2g(l1 − l1 cosφ2 + l2 − l2 cosφ4) (2.16)
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Hence, the total potential energy of the whole system is equal to:

V = m1gl1(1− cosφ1) +m2g(l1 − l1 cosφ1 + l2 − l2 cosφ3)+
+m1gl1(1− cosφ2) +m2g(l1 − l1 cosφ2 + l2 − l2 cosφ4) + 1

2
kx2 (2.17)

Having the potential and kinetic energy calculated, in order to construct equations of
motion according to the formula 2.1 a series of derivatives must be found. Namely,
derivatives of potential energy over all of the displacements ∂V

∂qj
, derivatives of kinetic

energy over all of the displacements ∂T
∂qj

and velocities ∂T
∂q̇j

as well as theirs derivatives

over time d
dt

(
∂T
∂q̇j

)
After di�erentiating kinetic energy with respect to all displacements

the following formulae are obtained:

∂T
∂φ1

= −m1ẋl1φ1 sinφ1 −m2ẋl1φ1 sinφ1 −m2l1l2φ̇1φ̇3 sin (−φ3 + φ1) ,
∂T
∂φ2

= −m1ẋl1φ2 sinφ2 −m2ẋl1φ2 sinφ2 −m2l1l2φ̇2φ̇4 sin (−φ4 + φ2) ,
∂T
∂φ3

= −m2ẋl2φ̇3 sinφ3 +m2l1l2φ̇1φ̇3 sin(−φ3 + φ1),
∂T
∂φ4

= −m2ẋl2φ̇4 sinφ4 +m2l1l2φ̇2φ̇4 sin(−φ4 + φ2),
∂T
∂x

= 0

(2.18)

Then, after di�erentiation of kinetic energy with respect to the velocities and then
with respect to time, the following formulae are obtained:

d
dt

(
∂T
∂φ̇1

)
= m1ẍl1 cosφ1 −m1ẋl1φ̇1 sinφ1 +m1l

2
1φ̈1+

+m2ẍl1 cosφ1 −m2ẋl1φ̇1 sinφ1 +m2l
2
1φ̈1 +m2l1l2φ̈3 cos(−φ3 + φ1)+

+m2l1l2φ̇3(−φ̇3 + φ̇1) sin(−φ3 + φ1),
d
dt

(
∂T
∂φ̇2

)
= m1ẍl1 cosφ2 −m1ẋl1φ̇1 sinφ2 +m1l

2
1φ̈2+

+m2ẍl1 cosφ2 −m2ẋl1φ̇2 sinφ1 +m2l
2
1φ̈2 +m2l1l2φ̈4 cos(−φ4 + φ2)+

+m2l1l2φ̇4(−φ̇4 + φ̇2) sin(−φ4 + φ2),
d
dt

(
∂T
∂φ̇3

)
= m2ẍl2 cosφ3 −m2ẋl2φ̇3 sinφ3 +m2l1l2φ̈1 cos(−φ3 + φ1)−

−m2l1l2φ̇1(−φ̇3 + φ̇1) sin(−φ3 + φ1) +m2l
2
2φ̈3,

d
dt

(
∂T
∂φ̇4

)
= m2ẍl2 cosφ4 −m2ẋl2φ̇4 sinφ4 +m2l1l2φ̈2 cos(−φ4 + φ2)−

−m2l1l2φ̇2(−φ̇4 + φ̇2) sin(−φ4 + φ2) +m2l
2
2φ̈4,

d
dt

(
∂T
∂ẋ

)
= m3ẍ+ 2m1ẍ−m1l1φ̇

2
1 sinφ1 +m1l1φ̈1 cosφ1−

−m1l1φ̇
2
2 sinφ2 +m1l1φ̈2 cosφ2 + 2m2ẍ−m2l1φ̇

2
1 sinφ1+

+m2l1φ̈1 cosφ1 −m2l2φ̇
2
3 sinφ3 +m2l2φ̈3 cosφ3 −m2l1φ̇

2
2 sinφ2+

+m2l1φ̈2 cosφ2 −m2l2φ̇
2
4 sinφ4 +m2l2φ̈4 cosφ4

(2.19)

The derivatives of potential energy with respect to all the displacements are equal to:

∂V
∂φ1

= m1gl1 sinφ1 +m2gl1 sinφ1,
∂V
∂φ2

= m1gl1 sinφ2 +m2gl1 sinφ2,
∂V
∂φ3

= m2gl2 sinφ3,
∂V
∂φ4

= m2gl2 sinφ4,
∂V
∂x

= kx

(2.20)
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As for the last component being the Rayleigh dissipation function D, it is equal to

Db =
1

2
cbẋ

2,

D1 =
1

2
cuφ̇

2
1,

D2 =
1

2
cuφ̇

2
2,

D3 =
1

2
clφ̇

2
3,

D4 =
1

2
clφ̇

2
4,

(2.21)

where Db is Rayleigh dissipation function corresponding to the damping of the spring
and D1 to D4 correspond to damping in nodes of upper and lower pendulums with
cu being a damping coe�cient for upper pendulums and cl for the lower ones. cb is
the damping coe�cient of the beam. All damping coe�cients will be later calculated
from the simpli�ed formulae for critical damping both in the spring and in the nodes.
A total dissipation function D is equal to the sum of above dissipation functions

D = Db +D1 +D2 +D3 +D4 (2.22)

After di�erentiation of dissipation function over the velocities the following formulae
are obtained

∂D

∂ẋ
= cbẋ,

∂D

∂φ̇1

= cuφ̇1,

∂D

∂φ̇2

= cuφ̇2,

∂D

∂φ̇3

= clφ̇3,

∂D

∂φ̇4

= clφ̇4

(2.23)

Finally, after substituting all of the components above into equation 2.1 the following
equations of motion are obtained:

m1l1ẍ cosφ1 +m1l
2
1φ̈1 +m2l1ẍ cosφ1 +m2l

2
1φ̈1 +m2l1l2φ̈3 cos(−φ3 + φ1)+

+m2l1l2φ̇
2
3 sin(−φ3 + φ1) +m1gl1 sinφ1 +m2gl1 sinφ1 + c1φ̇1 = 0

m1l1ẍ cosφ2 +m1l
2
1φ̈2 +m2l1ẍ cosφ2 +m2l

2
1φ̈2 +m2l1l2φ̈4 cos(−φ4 + φ2)+

+m2l1l2φ̇
2
4 sin(−φ4 + φ2) +m1gl1 sinφ2 +m2gl1 sinφ2 + c2φ̇2 = 0

m2l2ẍ cosφ3 +m2l1l2φ̈1 cos(−φ3 + φ1)−m2l1l2φ̇
2
1 sin(−φ3 + φ1) +m2l

2
2φ̈3+

+m2gl2 sinφ3 + c3φ̇3 = 0

m2l2ẍ cosφ4 +m2l1l2φ̈2 cos(−φ4 + φ2)−m2l1l2φ̇
2
2 sin(−φ4 + φ2) +m2l

2
2φ̈4+

+m2gl2 sinφ4 + c4φ̇4 = 0

m3ẍ+ 2m1ẍ+ 2m2ẍ−m1l1φ̇
2
1 sinφ1 +m1l1φ̈1 cosφ1 −m1l1φ̇

2
2 sinφ2 +m1l1φ̈2 cosφ2−

−m2l1φ̇
2
1 sinφ1 +m2l1φ̈1 cosφ1 −m2l1φ̇

2
2 sinφ2 +m2l1φ̈2 cosφ2 −m2l2φ̇

2
3 sinφ3+

+m2l2φ̈3 cosφ3 −m2l2φ̇
2
4 sinφ4 +m2l2φ̈4 cosφ4 + kx+ cbẋ = F sin(ωt)

(2.24)
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Before the equations can be inserted into program however, all of the components of
acceleration have to go on the left side of equations forming an inertia matrix, while
all the rest goes on the right side of equations:

ẍ(m1l1 cosφ1 +m2l1 cosφ1) + φ̈1(m1l
2
1 +m2l

2
1) +m2l1l2φ̈3 cos(−φ3 + φ1) =

= −m2l1l2φ̇
2
3 sin(−φ3 + φ1)−m1gl1 sinφ1 −m2gl1 sinφ1 − c1φ̇1

ẍ(m1l1 cosφ2 +m2l1 cosφ2) + φ̈2(m1l
2
1 +m2l

2
1) +m2l1l2φ̈4 cos(−φ4 + φ2) =

= −m2l1l2φ̇
2
4 sin(−φ4 + φ2)−m1gl1 sinφ2 −m2gl1 sinφ2 − c2φ̇2

m2l2ẍ cosφ3 +m2l1l2φ̈1 cos(−φ3 + φ1) +m2l
2
2φ̈3 = m2l1l2φ̇

2
1 sin(−φ3 + φ1)−

−m2gl2 sinφ3 − c3φ̇3

m2l2ẍ cosφ4 +m2l1l2φ̈2 cos(−φ4 + φ2) +m2l
2
2φ̈4 = m2l1l2φ̇

2
2 sin(−φ4 + φ2)−

−m2gl2 sinφ4 − c4φ̇4

(2m1 + 2m2 +m3)ẍ+ φ̈1(m1l1 cosφ1 +m2l1 cosφ1) + φ̈2(m1l1 cosφ2 +m2l1 cosφ2)+

+m2l2φ̈3 cosφ3 +m2l2φ̈4 cosφ4 = F sin(ωt) +m1l1φ̇
2
1 sinφ1 +m1l1φ̇

2
2 sinφ2+

m2l1φ̇
2
1 sinφ1 +m2l1φ̇

2
2 sinφ2 +m2l2φ̇

2
3 sinφ3 +m2l2φ̇

2
4 sinφ4 − kx− cbφ̇b

(2.25)
Equations prepared in this form are ready to be put into the program which performs
numerical computations based on them.
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Chapter 3

Numerical Analysis

In this the results of numerical computations based on the equations included in chapter
2 will be presented. The program was written in C++ language and slightly modi�ed
to ful�l the needs of the task described. The program is designed to be run under
Microsoft Windows environment. The equations were brought down to the form visible
in equation 2.25 and the put into the program and subsequently solved using 4th order
Runge-Kutta method with �xed time step. The time step used for this simulation was
equal to T/3600 with T being the period of excitation. Three versions of the programs
were in use as three di�erent diagram types were needed for the analysis - phase
portraits, Poincaré maps and bifurcation diagrams. As a result of the calculations the
program produced text �les containing the parameters needed for the diagrams in a
form ready to be imported into workbook based programs like MS Excel.

3.1 Simulation

The parameters of the system had to be chosen in a way that they are reasonable from
the mechanical point of view. The parameters of the system chosen for the simulation
were as follows:

m1 = 1 [kg],
m2 = 0.5 [kg],
m3 = 3 [kg],
l1 = 1.5 [m],
l2 = 1 [m]

The system was analysed for four di�erent amplitudes of excitation: 200, 250, 300
and 350 N. The coe�cient of sti�ness of the spring was assumed to be:

k = 850

[
N

m

]

The damping coe�cients for the beam cb and at the nodes of upper c1,c2 and lower
c3,c4 pendulums are, as mentioned before, based on the values of critical damping
coe�cients and diminished by an appropriate factor:
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cb = 0.3(
√
m3k)

[
kg · N
m

]
,

c1 = 0.1(
√
gl1)

[
m2

s2

]
,

c2 = 0.1(
√
gl1)

[
m2

s2

]
,

c3 = 0.1(
√
gl2)

[
m2

s2

]
,

c4 = 0.1(
√
gl2)

[
m2

s2

]
.

The initial conditions for the simulation were as follows:

x = 0.1 [m],
φ1 = π

6
[rad],

φ2 = −π
4
[rad],

φ3 = π
8
[rad],

φ4 = −π
4
[rad].

The system was investigated for four di�erent values of excitation amplitude - 200 [N],
250 [N], 300 [N], 350[N].

After the software calculations the text �les containing the results were imported
into a workbook in order to produce bifurcation diagrams, phase portraits and Poincaré
maps (see chapter 1.3) helpful in analysis of the systems behaviour.
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3.2 Diagrams and analysis

In order to analyse the synchronization of the pendulums it would be very convenient
to introduce two new variables e1 and e2, such that

e1 = φ1(t)− φ2(t),
e2 = φ3(t)− φ4(t)

(3.1)

Those variables de�ne the distance between conjugated trajectories of the subsystems
φ1(t) and φ2(t) for the �rst one and φ3(t) with φ4(t) for the second one in the
phase plane. They will be later called the phase di�erences. Such variables make
�nding a complete synchronization of pendulums easier as according to the de�nition
17 the complete synchronization occurs when the phase di�erence is equal to zero.
Instead of introducing those variables into Lagrange equations, they were calculated in
a workbook based software by simply subtracting columns with results corresponding
to φ1, φ2, φ3 and φ4 in order to obtain values of e1 and e2 respectively.

The anti-phase synchronization (with opposite phases for which the sums φ1 + φ2

or φ3 + φ4 would be equal to zero) was not observed at all for given range of control
parameter and initial conditions.

The areas on bifurcation diagrams for e1 and e2 (Figures 3.1 and 3.2) where value
of phase di�erence is equal to zero mean that system synchronises completely for
those values of control parameter. It is clearly visible that pendulums are in complete
synchronization (upper and lower ones with respect to each other respectively) in
most part of the investigated ω range. It is so for all investigated values of excitation
amplitude except for 350 [N] which corresponds to Figures 3.1.D and 3.2.D.

It can be noticed that along with the incrementation of the excitation amplitude
the range of ω values for which the complete synchronization does not occur increases
as well. It is also worth mentioning that the graphs for e1 = φ1 − φ2 and e2 =
φ3 − φ4 are similar for respective excitation amplitude values. In all cases occurs lack
of synchronization for ω equal to around 2.5 [Hz]. Also for excitation frequency higher
than 2.5 [Hz] the lack of synchronization of both upper and lower pendulums occurs
for similar ω values for respective excitation amplitude F values.

The relationship between system's behaviour (periodic, quasiperiodic and chaotic)
and pendulums synchronization will be later analysed. It will be very useful to de-
termine wether the synchronization of pendulum or lack thereof corresponds to some
particular systems behaviour. This could be done by comparing bifurcation diagrams
for angular displacements of pendulums with ω taken as a control parameter with
Figures 3.1 and 3.2. Also phase portraits will be useful to determine the nature of
system's behaviour for chosen control parameter values.
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Figure 3.1: Bifurcation diagrams for φ1 − φ2 with ω taken as a control parameter
and excitation amplitude equal to A: 200N, B: 250N, C: 300N, D: 350N.
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Figure 3.2: Bifurcation diagrams for φ3 − φ4 with ω taken as a control parameter
and excitation amplitude equal to A: 200N, B: 250N, C: 300N, D: 350N.
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Figure 3.3: Bifurcation diagrams for φ1 to φ4 and x with ω taken as a control
parameter and amplitude of excitation F = 200 [N]
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Figure 3.4: Bifurcation diagrams for φ1 to φ4 and x with ω taken as a control
parameter and amplitude of excitation F = 250 [N]
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Figure 3.5: Bifurcation diagrams for φ1 to φ4 and x with ω taken as a control
parameter and amplitude of excitation F = 300 [N]
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Figure 3.6: Bifurcation diagrams for φ1 to φ4 and x with ω taken as a control
parameter and amplitude of excitation F = 350 [N]
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Comparing the bifurcation diagrams for φ1 and φ2 for ω control parameter as
well as the ones for φ3 and φ4 (Figures 3.3, 3.4, 3.5, 3.6) with Figures 3.1 and 3.2
respectively, it is noticeable that the range for which the synchronization occurs is the
range where the system's behaviour is periodic. The periodic behaviour of the system
is observed when for the given control parameter there is only one point visible on
the bifurcation diagram. This results in a single line if the periodic behaviour occurs
for a subsequent control parameter values. When the system behaviour changes into
what is represented by a regular shape on the bifurcation diagram the pendulums fall
out of a complete synchronization. The nature of system's behaviour in those regions
were examined throughly by a set of phase diagrams and Poincaré maps which will
be presented for excitation amplitude F = 250 [N]. The presented phase diagrams
and maps were prepared for the regions corresponding to ω = 2.85 [Hz], 8.4 [Hz] and
9.5 [Hz]. This will allow to determine wether in for those values of ω the system's
behaviour is quasiperiodic or chaotic.

The shape of the bifurcation diagram for F = 250 [N] (Figure 3.4) for ω = 2.5
[Hz] to ω = 3.1 [Hz] implies the existence of Neimark-Sacker bifurcation, therefore
the phase diagrams and Poincaré maps for ω = 2.85 [Hz]. Subsequently, for the ω
value over 3.1 [Hz], until 8 [Hz] system seems to be returning to periodic behaviour by
means of inverse Neimarck-Sacker bifurcation and afterwards once again probably the
Neimark-Sacker bifurcation occurs and following the bifurcation the system presumably
falls into chaotic behaviour by destruction of 3-D Torus, hence the diagrams and maps
for control parameter equal to 8.4 [Hz] and 9.5 [Hz].

Point ω = 2.85 [Hz] lays in the region of suspected Neiman-Sacker bifurcation.
Phase portraits show thick toruses (Figure 3.7). The Poincaré maps in turn show
closed loops (Figure 3.8). This is su�cient to state that at this point the system
behaves in a quasiperiodic way. Quasiperiodic motion at this point con�rms that the
change of system's behaviour visible on the bifurcation diagram for ω in range from
2.5 to 3.1 [Hz] is in fact a Neiman-Sacker or as it is also referred to a secondary Hopf
bifurcation. This kind of bifurcation can be seen on bifurcation diagrams concerning
both upper (displacements φ1, φ2), and lower (displacements φ3, φ4) pendulums, but
not for the beam.
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Figure 3.7: Phase portraits for ω=2.85 [Hz] with excitation amplitude F=250 [N]
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Figure 3.8: Poincaré maps for ω=2.85 Hz with excitation amplitude F=250 N
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Figure 3.9: Phase portraits for ω=8.4 Hz with excitation amplitude F=250 N
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Figure 3.10: Poincaré maps for ω=8.4 Hz with excitation amplitude F=250 N
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Figure 3.11: Phase portraits for ω=9.5 Hz with excitation amplitude F=250 N
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Figure 3.12: Poincaré maps for ω=9.5 Hz with excitation amplitude F=250 N
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Next point, which corresponds to ω = 8.4 [Hz] also lies in the area of suspected
Neiman-Sacker bifurcation and once again, the quasiperiodic motion at this point
would con�rm this kind of bifurcations. The Poincaré maps for this excitation fre-
quency (Figure 3.10) show closed loops for upper and lower pendulum's displacements
while phase portraits show quite complicated loops. In this case it is also a su�cient
proof that there is a quasiperiodic motion at this point, which in turn proves the as-
sumption that the change of system's behaviour, visible on bifurcation diagrams for
the displacements of pendulums (Figure 3.4), for a control parameter in range from 8
[Hz] to around 8.65 [Hz] is the Neiman-Sacker bifurcation.

The next point was taken for the value ω = 9.5 [Hz] which corresponds to the
area on bifurcation diagrams which can suggest the chaotic behaviour of the system.
Phase portrait for this point shows very complicated shape and Poincaré map presents
collection of irregularly distributed points. This can mean that for values of ω higher
than 8.65 system starts to behave hyperchaotically because there is no fractal structure
in the plot.

This also con�rms that system stops being in complete synchronization for any
pair of the pendulums when it is behaving chaotically for F = 250 [N].

Next step in the analysis of this system was to perform bifurcation diagrams with
mass of the upper pendulums (m1) as a control parameter, for chosen values of exci-
tation frequency ω. For all excitation amplitude values it was 4 [Hz], additionally 9.8
[Hz] for F = 200 [N], 9.4 [Hz] for F = 250 [N], 9 [Hz] for F = 300 [N], 6.3 and 7.3
for F = 350 [N].

It can be noticed that for ω = 4HZ, the bifurcation diagrams sets for all of the
excitation amplitudes given (Figures 3.13, 3.15, 3.17 and 3.19) look similar. For this
excitation frequency doesn't in�uence the system's behaviour for any of the analysed
excitation amplitude, as it is clearly visible that for any angular displacement there is
not more than one point for any chosen value of control parameter. Therefore system
is behaving periodically for excitation frequency ω = 4 [Hz] regardless of mass and
excitation frequency within analysed range.

On the bifurcation diagrams set for ω = 9.8 Hz and F = 200 [N] (Figure 3.14)
it can be seen that system behaves periodically only for a small range of control
parameter. Around m1 = 0.7 kg system's behaviour changes and then changes again
after m1 equal to around 1.5 kg into presumably a quasiperiodic behaviour. Also,
for lower pendulums, for m1 after around 4.3 kg it falls into what could be a chaotic
behaviour. The further study of this and all of the further cases could fully determine
the behaviour of the system after the changes in the bifurcation diagrams.

For ω = 9.4 and F = 250 [N] (Figure 3.16) the bifurcation diagrams show that
for those conditions the system can behave periodically but only for a short range
of upper pendulums mass. System also can behave in a quasiperiodic way for upper
pendulums which can be visible for example for m1 > 1.2 kg up until around 5 kg. For
the lower pendulums system almost instantly falls into presumably chaotic behaviour
and remains in this state for the whole range of analysed control parameter.

Analysing the bifurcation diagram for ω = 9 [Hz] and F = 300 [N] (Figure 3.18)
it can be noticed that after short region of periodic behaviour for a very light upper
pendulums the system falls into supposed chaotic behaviour and remains chaotic for
the whole rest of the control parameter range.
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Figure 3.13: Bifurcation diagrams for φ1 to φ4 and x with mass m1 taken as a
control parameter and amplitude of excitation F = 200 [N] for ω = 4 [Hz]
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Figure 3.14: Bifurcation diagrams for φ1 to φ4 and x with mass m1 taken as a
control parameter and amplitude of excitation F = 200 [N] for ω = 9.8 [Hz]
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Figure 3.15: Bifurcation diagrams for φ1 to φ4 and x with mass m1 taken as a
control parameter and amplitude of excitation F = 250 [N] for ω = 4 [Hz]
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Figure 3.16: Bifurcation diagrams for φ1 to φ4 and x with mass m1 taken as a
control parameter and amplitude of excitation F = 250 [N] for ω = 9.4 [Hz]
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Figure 3.17: Bifurcation diagrams for φ1 to φ4 and x with mass m1 taken as a
control parameter and amplitude of excitation F = 300 [N] for ω = 4 [Hz]
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Figure 3.18: Bifurcation diagrams for φ1 to φ4 and x with mass m1 taken as a
control parameter and amplitude of excitation F = 300 [N] for ω = 9 [Hz]
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Figure 3.19: Bifurcation diagrams for φ1 to φ4 and x with mass m1 taken as a
control parameter and amplitude of excitation F = 350 [N] for ω = 4 [Hz]
b

42



Figure 3.20: Bifurcation diagrams for φ1 to φ4 and x with mass m1 taken as a
control parameter and amplitude of excitation F = 350 [N] for ω = 6.3 [Hz]
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Figure 3.21: Bifurcation diagrams for φ1 to φ4 and x with mass m1 taken as a
control parameter and amplitude of excitation F = 350 [N] for ω = 7.3 [Hz]
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As for the analysis of the diagrams concerning the highest analysed excitation
amplitude, F = 350 [N], the bifurcation diagrams for ω = 6.3 (Figure 3.20), which
corresponds to the chaotic behaviour on the bifurcation diagrams with ω taken as
a control parameter (Figure 3.6, show that system also presents periodic behaviour
for very light pendulums and subsequently, after what probably is a Neimark-Sacker
bifurcation it exhibits a chaotic behaviour for all the angular displacements.

Lastly, the bifurcation diagrams for ω = 7.3 [Hz] and F = 350 [N], which corre-
sponds to the window with period two on the Figure 3.6, shows that system behaves
in a quasiperiodic way most of the time, whereas at the beginning of the tested range,
after brief period of periodic motion and supposed Neimark-Sacker bifurcation falls
into chaotic behaviour for a short range of m1.
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Chapter 4

Conclusions

The system under consideration was a set of two double pendulums connected by single
degree of freedom beam excited horizontally. The system has �ve degrees of freedom -
horizontal displacement of the beam x and four angular displacements corresponding to
four pendulums (φ1 to φ4). The system analysis was performed using phase portraits,
Poincaré maps and bifurcation diagrams, based on the results of numerical calculations
by a program written in C++.

The aim of those analysis was to check the system's behaviour undergoes along
with the change of the excitation frequency and pendulums mass. The analysis of
system's synchronization dependency on excitation was also performed. Both analysis
were performed for four di�erent excitation amplitudes.

For the tested range of control parameter (ω from 0.1 to 10 [Hz]) the synchroniza-
tion of the system was changing in a signi�cant way. Although for lower excitation
amplitudes both pendulum pairs stayed completely synchronised for most part of the
considered range, it started to fall out of synchronization for higher ω values. For the
highest excitation amplitude (F = 350 [N]) the system desynchronized slightly after
the middle of the tested range of control parameter.

The examined system presented di�erent types of behaviour - periodic, quasiperi-
odic and chaotic. The type of system's behaviour was checked using bifurcation
diagrams and, additionally, phase portraits and Poincaré maps in order to con�rm the
nature of systems behaviour where bifurcation diagrams were not enough. The system
was throughly analysed for excitation amplitude F = 250 [N] and ω taken as a control
parameter, where all three types of behaviour could be observed. The quasiperiodic
behaviour of the system for this excitation amplitude and control parameter indicates
the Neimark-Sacker bifurcation. After analysis and comparison of bifurcation dia-
grams for angular displacements and phase di�erences it is possible to state that for
this conditions the system is in complete synchronization when it is behaving in a
periodic way and loses synchronization when the system starts to behave chaotically
or hyperchaotically.

Apart from bifurcation diagrams with excitation frequency the ones with mass of
the upper pendulums taken as a control parameter were performed. The analysis of
those digrams shows that although the system's behaviour for ω = 4 [Hz] stays periodic
for the whole analysed range of pendulums mass (0.1 to 10 [kg]). For higher values of
excitation frequency the system can exhibit periodic, quasiperiodic and (hyper)chaotic
behaviour.
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