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Chapter 1

Introduction

This thesis presents the analysis of the dynamics of two coupled elastic pendula, with

particular attention to possible synchronous solutions. The analyzed system of two elastic

pendula mounted on the oscillator, is subjected to parametric vertical periodic excitation.

The thesis starts with the summary of the research perfomed in the �eld of dynamics of

elastic pendula, including planar pendula (as in this thesis) and three-dimensional one.

As a next step the di�erent classi�cation of synchronization phenomenon is provided.

The thesis continues then with the detailed description of the analyzed system and the

derivation of equations of motion with Lagrangian mechanics. The chapter describing

the performed analysis, starts with the description of free oscillations, that allowed to

observe synchronization, with net force acting on the oscillator mass equal to 0. The

main part of the thesis concentrates on calculation of synchronization regions for both

oscillatory and rotational solutions, which is done using numerical continuation. Finally

the work considers in detail some asynchronous solutions that bifurcate from the observed

synchronized solutions.

The thesis is realised within the TEAM programme of Foundation for Polish Science,

co-�nanced from European Union, Regional Development Fund.

1.1 Elastic pendula literature review

The elastic pendulum is a simple mechanical system that exhibits a wide and surprising

range of highly complex dynamic phenomena. There was some research in this area, with

di�erent approaches to the problem including classical perturbation techniques, that allow

to obtain analytical solution, for ranges of parameters when motion is regular. The �rst

known study of the elastic pendulum has been done by Vitt and Gorelik [18]. They

considered a single two degree of freedom elastic pendulum, con�ned to a plane. The
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CHAPTER 1. INTRODUCTION 4

equations of motion are derived from Lagrangian formulation. Cubic order terms are

neglected, what is the consequence of assuming that amplitudes are su�ciently small.

Two di�erent linear modes are de�ned for oscillating pendulum mass and for pendula

itself. Vitt and Gorelik considers a special case, for which the frequency of pendulum

mass is twice the frequency of the pendulum. As a result both modes of motion can be

induced by one another, through nonlinear interactions, that provide coupling between

them. Such behaviour is known as a parametric resonance, in which the transfer of energy

between the two components of the system takes place and depends strongly on applied

initial conditions.

The studies of the system are based on secular perturbation theory. The authors compute

periodic solutions, for two cases, with and without energy transfer between the compo-

nents of the system. Either of these cases is ensured by application of appropriate initial

conditions. As for the case without energy, the coupling is responsible only for changinig

the frequencies of oscillations of the pendula and pendula masses, but preserving the 2:1

ratio between them. Periodic solutions, for which there is continuous exchange of energy

between the components are obtained using perturbed Hamiltonian.

In addition to theoretical studies, Vitt and Gorelik perform experiments, which appear to

be in good agreement with theoretical predictions. The authors pay particular attention

to the strong dependence of nonlinear interactions between the possible modes of motion,

on initial conditions. Finally the paper compares the observed parametric resonance with

the quantum mechanical phenomenon of Fermi resonance, observed in the line spectrum of

CO2 molecule, for which the frequency ratio is close to 2:1, making both these behaviours

closely analogous.

Lynch [7] generalized the results obtained by Vitt and Gorelik, by analyzing the three

dimensional elastic pendulum. The equations of motion are derived similarly from La-

grange approach. Terms of higher than cubic order are neglected from the equations

of motion. The author considers, as Vitt and Gorelik, two types of solutions with and

without transfer of energy. Using perturbation theory, the paper considers conical motion

of elastic pendulum. When the ratio between the natural frequencies of pendulum mass

and pendulum is 2:1, resonance is observed, for which energy is periodically transferred

between the components of the system. The approximate expressions describing the be-

haviour of 3D elastic pendulum are compared to numerical results, proving the usefullness

of the proposed approach.

Lynch [8] gives an overview of the research performed for the system of 2D elastic pen-
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dulum and shows how this simple system can be used to model the behaviour of the

atmosphere. Due to the presence of coupling in the system, the analytical approach can-

not be applied. Instead the author uses, as in Lynch [7] perturbation theory to compute

solutions, where perturbation parameter ε describes the ratio of the frequencies for slow

and fast oscillations. As a next step the Kolmogorov-Arnold-Moser (KAM) theorem is

applied to ensure necessary restraints on the nature of the solutions. The validity of this

approach is veri�ed with the numerical results.

The system of elastic pendulum aroused much interest due to rich variety of solutions

that are available. When the amplitudes of oscillations are small, the motion of the

system is regular, and thus classical perturbation theory yields valid results. For bigger

amplitudes the system enters chaotic regime, which covers the more phase-space, the

more energy grows. As described by Nunez-Yepez et al. [11], for large energies, the

motion of the pendulum becomes once more regular and predictable. In this paper, the

authors used Hamiltonian approach to write equations of motion for the elastic pendulum

and concentrated on chaotic motion. Like Vitt and Gorelik and Lynch, the behaviour

of pendulum at parametric resonance 2:1 is studied. The authors demonstrate that for

increased pendulum energy, the motion alternates between regular and chaotic one. Re-

peating transitions order-chaos-order are being observed for increased energy, whereas

for small energies quasi-periodic solutions dominate. For large energies the pendulum

rotates around suspension point in a regular manner, what means that for certain value

of energy chaos starts to dissappear. It is explained that the motion becomes regular,

because the observed rotational motion nulli�es the strong nonlinear coupling between

the components of the pendulum.

Davidovic et al.[5] studied also the elastic pendulum in resonance, but concentrated the

attention at determining the limits of oscillatory motion of the pendulum and pendu-

lum mass. The analysis is done using Hamiltonian approach, for the elastic pendulum

described by parabolic coordinates.

Anicin et al. [1] considered the stability of elastic pendulum, by means of linear theory.

As in other studies the ratio between the natural frequencies of pendulum mass and

pendulum was 2:1. In this example the pendulum mass was forced harmonically. The

authors aimed to determine graphically the parameters range, for which the instability

of the initial vertical motion of the pendulum mass takes place and leads to oscillations

of the pendulum via parametric resonance. This is achieved by writing the equation of

motion for horizonthal direction in the form:
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ẍ+ [ω2
1 + βA cos(ω2t)]x = 0 (1.1)

where ω1 denotes natural frequency of the pendulum, ω2 is natural frequency of pendulum

mass, A is amplitude of forcing, and β = ω2
2 − ω2

1 and comparing it with standard form

of Matthieu equation:

d2x

dτ2
+ [a+ 16q cos(2τ)]x = 0 (1.2)

The stability is determined graphically using Ince-Strutt stability chart, what makes it

possible to determine the range of pendulum masses that result in instability in the motion

of the pendulum.

1.2 Synchronization

Synchronization is a very important phenomenon, observed in dynamical systems, espe-

cially the one containing pendula. Its name comes from Greek and means something

that shares the same time. Synchronization was �rst observed in seventeenth century,

by Huygens in the system of clocks placed on the ship on the open sea. These clocks

were swinging in opposite directions, so this was the �rst example of exact synchroniza-

tion. The clocks, when disturbed, still returned to the synchronous state, after some

time, which was the result of their coupling through the beam on which the clocks were

mounted.

By synchronization we understand adjustment of rhythms of self-sustained periodic

oscillators, which result from weak interaction between them. According to Blekhman,

(1988) this phenomenon can be described in terms of phase locking and frequency entrain-

ment. Synchronization can be observed in rotator systems as well as in chaotic systems.

When large number of systems are coupled together, the synchronization appear via non-

equilibrium phase transitions.

It is possible to encounter synchronization in a group of non-coupled autonomous

oscillators, subjected to periodic forcing or noise. This feature has many applications

which include for example radio-controlled clocks, for which a periodic radio signal adjusts

relatively non-precise clocks [13] and cardiac pacemakers where heart beats are paced by

a sequence of pulses from an electronic generator [15]. For these cases the group of non-

coupled oscillators is subjected to periodic forcing f(t), which can lead, after the decay of

the transient, to consistence of the vector states of the analyzed systems. It is neccessary

for all conditional Lyapunov exponents to be negative, in order to observe synchronized

solutions.

The presence of synchronization in dynamical system indicates that the responses of
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its components are related to each other. In most cases this relationship is a complex

one, therby making it more di�cult to detect, since it is not always associated with both

trajectories being the same. The classi�cation of synchronization is based on relationship

between the responses as desribed by [2]. Assuming we have two systems, described

by their trajectories x(t) and y(t) respectively, we distinguish: complete synchronization

[CS], phase synchronization [PS], lag synchronization [LS] and generalized synchronization

[GS]. In case of complete synchronization, both phases and amplitudes of the oscillating

systems have to coincide. In order to observe this state of synchronization the analyzed

oscillators need to be identical, and either internal or external coupling between them has

to be provided. According to Pecora and Caroll [12], for complete synchronization, phase

trajectories x(t) and y(t) of the coupled systems converge to the same value and remain

in this relation during the further time evolution. This can be described by:

lim
t→∞

|x(t)− y(t)| = 0, (1.3)

Very often the above synchronization condition is not ful�lled completely. It is the result

of presence of noise or small di�erence in parameters, and is known as imperfect complete

synchronization [ICS], for which the synchronization condition is written as:

lim
t→∞

|x(t)− y(t)| = ε, (1.4)

where ε is a small parameter.

In nonidentical systems we can observe phase synchronization [PS], for which phases

of oscillations are locked within a certain range. In that case a much weaker coupling is

required, compared to the complete synchronization. The correlation between the phases

doesn't usually result in any correlation between the amplitudes of oscillations. The

condition describing phase synchronization is written as:

|nΦ1(t)−mΦ2(t)| < c, (1.5)

where Φ1(t) and Φ2(t) are phases of coupled oscillators, ans m and n are constants

describing locking ratio. As a result of the above condition, the frequencies of both

oscillators have to be locked and ful�ll:

nω1 −mω2 = 0, (1.6)

Another possible type of synchronization is lag synchronization [LG], for which there

appears a di�erence between the response of one system and the delayed response of the

other system. Moreover this di�erence is bounded. It can be said that the one system

anticipates the response of the second one. Both system appear to behave in the same
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way, but their responses are shifted in time with respect to each other. The observed

shift is know as the lag time. As a result for lag synchronization there is a relation

between both phases and amplitudes of the two oscillating systems. If in the analyzed

system we observe the state for which we have lag synchronization most of the time,

but which is broken with intervals of asynchronous motion, we deal with intermittent lag

synchronization [ILS].

If we analyze nonidentical oscillators and observe that the state of one system can

be predicted using the state of the other one, but not the other way around, it means

we have generalized synchronization [GS]. This means that there is a directional function

connecting the responses of both systems, which is expressed as:

y(t) = ψ(x(t)), (1.7)

Looking at the type of the analyzed system we can distinguish synchronization of

externally forced periodic oscillators and synchronization of coupled oscillators. In the

�rst case, the presence of synchronization is determined by the magnitude of forcing as

well as by detuning parameter, representing the di�erence between natural frequency of

the system and the frequency of the applied force. The basic example of coupled system

is written as:

dx1
dt

= f1(x1) + εp1(x1, x2) (1.8)

dx2
dt

= f2(x2) + εp2(x1, x2) (1.9)

with ε being the coupling parameter, that ensures synchronization between the two

systems. When coupling parameter tends to zero, the systems oscillate with their own

natural frequencies.

In case of noisy systems, being intermittent systems between periodic and chaotic one,

we can observe imperfect phase synchronization [IPS], for which frequencies nearly adjust

and phase slips take place.

Synchronization is also possible to be observed in chaotic systems, but its detection

is complex. In order to do this, one have to de�ne the mean observed frequency of the

system in terms of unstable periodic orbits, that are embedded in the chaotic attractor.



Chapter 2

Model of the system

The analyzed system is shown in Fig. 2.1. It consists of two identical elastic pendula of

length l0, spring sti�ness k2 and masses m, which are suspended on the oscillator. The

oscillator consists of a bar, suspended on linear spring with sti�ness k1 and linear viscous

damper with damping coe�cent C1. The system has �ve degrees of freedom. Mass M is

constrained to move only in vertical direction and thus is described by the coordinate y.

The motion of the �rst pendulum is described by angular displacement ϕ and its mass

by coordinate x2, that represent the elongation of the elastic pendulum. Similarly the

second pendulum is described by angular displacement φ and its mass by coordinate x3.

Both pendulas are damped by torques with identical damping coe�cent C2, that depend

on their angular velocities (not shown in Fig. 2.1). The small damping, with damping

coe�cient C3 is also taken for pendula masses. The system is forced parametrically by

vertically applied force F (t) = F0 cos νt, acting on the bar of mass M , that connects the

pendula. F0 denotes the amplitude of excitation and ν the excitation frequency.

9
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k2

m

m

x3

x2

y

C1

M

k

F t( )

φ

ϕ

k2k2

Figure 2.1: Model of the system

The equations of motion can be derived using Lagrange equations of the second type. The

kinetic energy T , potential energy V , and Rayleigh dissipation D are given respectively

by:

T =
1

2
(M + 2m)ẏ2 +

1

2
mẋ23 +

1

2
m(l0 + ywst2 + x3)2φ̇2 +mẏẋ3 cosφ+ (2.1)

−mẏφ̇(l0 + ywst2 + x3) sinφ+
1

2
mẋ22 +

1

2
m(l0 + ywst2 + x2)2ϕ̇2+

+mẏẋ2 cosϕ−mẏϕ̇(l0 + ywst2 + x2) sinϕ

V = −mg(l0 + ywst2 + x2) cosϕ−mg(l0 + ywst2 + x3) cosφ+ (2.2)

mg(l0 + ywst2) +mg(l0 + ywst2) +
1

2
k1(y + ywst1)2 +

1

2
k2(ywst2 + x2)2+

+
1

2
k2(ywst2 + x3)2 − (M + 2m)gy
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D =
1

2
C2ϕ̇

2 +
1

2
C2φ̇

2 +
1

2
C3ẋ

2
2 +

1

2
C3ẋ

2
3 (2.3)

where C3 is the damping coe�cient of the pendulum mass and ywst1 = (M+2m)g
k1

, ywst2 =
mg
k2

represent static de�ation of massM and pendulums' massm respectively. The system

is described by �ve second order di�erential equations given in the following form:

m(l0 + ywst2 + x2)2ϕ̈+ 2m(l0 + ywst2 + x2)ϕ̇ẋ2 −mÿ(l0 + ywst2 + x2) sinϕ+ (2.4)

+mg(l0 + ywst2 + x2) sinϕ+ C2ϕ̇ = 0

m(l0 + ywst2 + x3)2φ̈+ 2m(l0 + ywst2 + x3)φ̇ẋ3 −mÿ(l0 + ywst2 + x3) sinφ+ (2.5)

+mg(l0 + ywst2 + x3) sinφ+ C2φ̇ = 0

mẍ3 +mÿ cosφ−mφ̇2(l0 + ywst2 + x3)−mg cosφ+ (2.6)

+k2(ywst2 + x3) + C3ẋ3 = 0

mẍ2 +mÿ cosϕ−mϕ̇2(l0 + ywst2 + x2)−mg cosϕ+ (2.7)

+k2(ywst2 + x2) + C3ẋ2 = 0

(M + 2m)ÿ +mẍ3 cosφ− 2mẋ3φ̇ sinφ−m(l0 + ywst2 + x3)φ̈ sinφ+ (2.8)

−m(l0 + ywst2 + x3)φ̇2 cosφ+mẍ2 cosϕ− 2mẋ2ϕ̇ sinϕ+

−m(l0 + ywst2 + x2)ϕ̈ sinϕ−m(l0 + ywst2 + x2)ϕ̇2 cosϕ+

−(M + 2m)g + k1(y + ywst1) + C1ẏ − F0 cos νt = 0

In the numerical calculations we use the following values of parameters:
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M = 10 [kg], m = 0.2 [kg], l0 = 0.24849 [m],

k1 = 1642.3 [
N

m
], k2 = 19.7 [

N

m
],

C1 = 13.1 [
Ns

m
], C2 = 0.00776 [Nms], C3 = 0.49 [

Ns

m
],

ywst1 = 0.062 [m], ywst2 = 0.1 [m]

Introducing dimensionless time τ = ω1t, where ω
2
1 = k1

M+2m is the natural frequency of

massM with the attached pendulas, we obtain dimensionless equations of motion written

as:

Ψ̈ +
2β2

(1 + y2st + χ2)
Ψ̇χ̇2 −

β2
1

(1 + y2st + χ2)
γ̈ sin Ψ +

sin Ψ

(1 + y2st + χ2)
+ (2.9)

+
α2

(1 + y2st + χ2)2
Ψ̇ = 0

Φ̈ +
2β2

(1 + y2st + χ3)
Φ̇χ̇3 −

β2
1

(1 + y2st + χ3)
γ̈ sin Φ +

sin Φ

(1 + y2st + χ3)
+ (2.10)

+
α2

(1 + y2st + χ3)2
Φ̇ = 0

χ̈3 +
β2
1

β2
2

γ̈ cos Φ− 1 + y2st + χ3

β2
2

Φ̇2 − 1

β2
2

cos Φ + yst2 + χ3 + α3χ̇3 = 0 (2.11)

χ̈2 +
β2
1

β2
2

γ̈ cos Ψ− 1 + y2st + χ2

β2
2

Ψ̇2 − 1

β2
2

cos Ψ + yst2 + χ2 + α3χ̇2 = 0 (2.12)

γ̈ +
β2
2a

β2
1

χ̈3 cos Φ− 2β2a

β2
1

χ̇3Φ̇ sin Φ− (1 + y2st + χ3)a

β2
1

Φ̈ sin Φ+ (2.13)

− (1 + y2st + χ3)a

β2
1

Φ̇2 cos Φ +
β2
2a

β2
1

χ̈2 cos Ψ− 2β2a

β2
1

χ̇2Ψ̇ sin Ψ+
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− (1 + y2st + χ2)a

β2
1

Ψ̈ sin Ψ− (1 + y2st + χ2)a

β2
1

Ψ̇2 cos Ψ+

− 1

β2
1

+ γ + y1st + α1γ̇ − q cosµτ = 0

where :

ω2
2 =

k2
m
, ω2

4 =
g

l0
, µ =

ν

ω1
, y1st =

ywst1

l0
, y2st =

ywst2

l0
,

β1 =
ω1

ω4
, β2 =

ω2

ω4
, a =

m

M + 2m
, q =

F0

ω2
1l0(M + 2m)

,

α1 =
C1

ω1(M + 2m)
, α2 =

C2

mω4l20
, α3 =

C3

ml0ω2
2

,

γ =
y

l0
, γ̇ =

ẏ

l0ω4
, γ̈ =

ÿ

l0ω2
4

, χ3 =
x3
l0
, χ̇3 =

ẋ3
l0ω2

,

χ̈3 =
ẍ3
l0ω2

2

, χ2 =
x2
l0
, χ̇2 =

ẋ2
l0ω2

, χ̈2 =
ẍ2
l0ω2

2

, Ψ = ϕ,

Ψ̇ =
ϕ̇

ω4
, Ψ̈ =

ϕ̈

ω2
4

, Φ = φ, Φ̇ =
φ̇

ω4
, Φ̈ =

φ̈

ω2
4

The dimensionless parameters of the system have the following values:

β1 = 2, β2 = 1.58,

α1 = 0.1, α2 = 0.01, α3 = 0.1

a = 0.0192, y1st = 0.25, y2st = 0.4



Chapter 3

Simulation

3.1 Motivation

We study system (2.9-2.13) in order to detect possible synchronization ranges. There are

two basic types of synchronous motion, which are depicted in Fig. 3.1(a,b). The pendulas

can synchronize either in-phase or in anti-phase with each other, i.e., θ = φ or θ = −φ.
In both mentioned cases the forces acting in vertical direction on mass M are identical

(there are no forces in horizontal direction), hence the energy transmitted between mass

M and pendulas in in-phase and anti-phase motion is also identical. If there is an in-

phase synchronization, the anti-phase also coexists in the same range of parameters. The

accessibility of in-phase and anti-phase motion is governed only by initial conditions. The

pendulas' masses are always synchronized in the in-phase with each other, i.e., x2 = x3.

The anti-phase con�guration of the masses is not observed (x2 = −x3) with the oscillating

pendulas. The anti-phase synchronization of masses is possible when the pendulas are in

equilibrium positions, then the sum of forces transmitted to mass M is equal to zero.

m m m

(a) (b)

m

Figure 3.1: Possible synchronization (a) in phase, (b) in anti-phase

14
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3.2 Free oscillations

As a �rst step to the understanding of the analyzed system free oscillations were con-

sidered. This means that the forcing in the system is set to 0. Moreover the damping

in the pendula spring is neglected. As a result the following values of nondimensional

parameters were used: β1 = 2, β2 = 0.5, α1 = 0.1, α2 = 0.1, α3 = 0, a = 0.0192308,

y1st = 0.25, y2st = 0.4, q = 0. The analysis of free oscillations have shown, that it

is possible to observe such state of the system, where pendula or pendula masses oscil-

late, and at the same time the bar M is stationary. Depending on the initial conditions,

di�erent con�gurations of such a behaviour are possible to be observed in the system.

This includes for example anti-phase synchronization 1:1 of pendula masses, shown in

Fig. 3.2. In that case, the pendula are displaced initially almost in anti-phase, which

results in anti-phase 1:1 synchronization of pendula masses (Fig. 3.2(b)), whereas the

pendula and bar M stop oscillating due to the damping, since the total force acting on

the bar is zero. When the damping of the pendula motion is neglected (α2 = 0) we can

observe similar behaviour with both pendula and pendula masses synchronizing. Fig.

3.3 presents the case, when after initial oscillations of pendula, pendula masses and the

bar, �nally 3.3(b&c) we observe anti-phase synchronization 1:1 of pendula and in-phase

synchronization 1:1 of pendula masses. Fig. 3.3(d&e) show synchronization graphs for

pendula and pendula masses respectively. In Fig. 3.4(b&c) we see example of a quarter

synchronization of pendula (shifted by quarter of a period), as de�ned by Czoªczy«ski

et. al. [4] and anti-phase synchronization of pendula masses. In both these cases at

�rst pendula masses oscillate in phase, with increasing amplitudes, that decrease as the

motion stabilizes and �nal con�guration is reached.
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Figure 3.2: (a) & (b) Free oscillations corresponding to coordinates Ψ, Φ, χ3, χ2, γ, for
nonzero initial conditions: Ψ(0) = 0.1, Φ(0) = −0.101, (c) synchronization graph for the
pendula masses as depicted in (b)
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−0.1, (d) &(e) synchronization graphs for the pendula and pendula masses respectively,
as depicted in (c)
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other nonzero initial condition: χ3(0) = 0.1

Fig. 3.5 illustrates the dependence of initial potential energy Vini, end potential energy

Vend and dissipated energy Vdis on the initial condition of pendula mass χ2(0). It clearly

con�rms that we can �nd appropriate initial condition for this mass, so that the energy

dissipated in the system would be zero. This type of analysis allows us to clearly determine

the necessary initial conditions, so that the described behaviour could be observed.

3.3 Stability of synchronous motion

In this section we study the stability of the observed synchronous oscillations and rotations

of the pendula. We present the bifurcation diagrams calculated in two-parameter space:

amplitude q versus frequency µ of excitation. We focus our attention on determining the

regions of synchronous stable motion and bifurcations that lead to their destabilization.

We consider the state of the system in the following range q ∈ [0, 1.2] of forcing amplitudes

and frequency of excitation belonging to the range µ ∈ [0.3, 1.2], which cover the possible

resonances in the system. Resonance should be observed when the frequency of excitation

comes close to the natural frequencies: of massM µM = 1, of pendula µp ≈ 0.50 and pen-

dulum mass µpm ≈ 0.79. Fig. 3.6 presents two parameter bifurcation diagram, obtained

by direct integration. It shows the existence of synchronous, asynchronous motion and

equilibrium solutions. As soon as we have a lot of coexisting solutions to hold clearance

of Figure 3.6 we do not distinguish which type of synchronous or asynchronous we �nd.

For low amplitudes of excitation, the only solution is equilibrium, which turns into syn-

chronous or asynchronous solution as the frequency of excitation increases. The detailed
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analysis of synchronous solutions was performed using continuation software Auto-07p [6].

We calculate the stability borders of each identi�ed case, i.e., the ranges inside which the

given motion is stable. The �rst periodic solution is observed for frequency of excitation

around µ ≈ 0.4 and for amplitudes of excitation above q ≈ 0.8. This periodic solution

shown in Fig. 3.7(a) is identi�ed as anti-phase oscillations of pendula and pendula masses

locked 1:1 with forcing. This solution is destabilized by Saddle-Node bifurcation curve

(green line), period doubling (blue line) and Neimark-Sacker (red line) bifurcations. The

continuation reveals that for small range of parameters, around the frequency of excita-

tion close to the natural frequency of pendula, this solution coexists with in-phase 2:1

oscillations. Oscillations 2:1 are destabilized by Saddle-Node bifurcation curve then by

Neimark-Sacker and pitchfork symmetry breaking bifurcation (SB2). In the investigated

system we distinguish two di�erent symmetry breaking pitchfork bifurcations one of them

(SB2) brokes symmetry between the pendulas, the second one (SB1) brokes the symme-

try of each pendula but their motion remains identical. As the frequency of excitation

increases we observe either asynchronous motion or equilibrium. With further increase

of excitation frequency we observe asynchronous behavior, which change into two small

regions of in-phase rotations 3:1. We show it in Fig. 3.7(f) and this area is bounded by

Neimark-Sacker, period doubling and Saddle-Node bifurcations. This solution coexists

with rotations in phase 2:1, presented also in Fig. 3.7(f). The stability region for this

solution is bounded by pitchfork SB1 bifurcation from the left and right, Neimark-Sacker

from above, and Saddle-Node and Neimark-Sacker bifurcations from the right. Both these

solutions coexist in small range of considered parameters with another synchronous anti-

phase rotations 4:1, presented in Fig. 3.7(f). The synchronous motion destabilizes from

the right by Saddle-Node and pitchfork SB2 curves, from above by Neimark-Sacker, and

from the left by Neimark-Sacker, Saddle-Node and pitchfork SB2 curves.

Around µ ≈ 0.8, where the resonance of pendulum masses occur, the system possesses

quite rich dynamics, which results in the coexistence of di�erent synchronous solutions

together with asynchronous solutions. This includes anti-phase rotations 2:1 depicted

in Fig. 3.7(c,d) , in-phase rotations 1:1 shown in Fig. 3.7(b), in-phase 3:1 rotations of

pendula and pendula masses 3:1 presented in Fig. 3.7(e). Thereby it is not possible to

fully compare the bifurcation diagram from the direct integration with the results from

Auto-07p. In the case of rotations 2:1 the synchronous motion is destroyed from the right

by Saddle-Node and pitchfork SB2 curves, from above by Neimark-Sacker, and from the

left by Saddle-Node, Neimark-Sacker and pitchfork SB2 bifurcations. Rotations 1:1 are

destabilized by pitchfork SB2 from the right, and by Neimark-Sacker and period dou-

bling from the left. The rotations 3:1 are mainly destabilized by pitchfork SB2 from the

right and by pitchfork SB2 and period doubling from the bottom, and by period dou-
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bling, pitchfork SB2, Saddle-Node and Neimark-Sacker from the left. From this solution,

through period-doubling bifurcation we �nd synchronized rotations 6:1-6:1, shown in Fig.

3.7(e). This solution is destabilized from above by period-doubling bifurcation, from the

left through pitchfork SB2 bifurcation, and from below through Saddle-Node bifurcation

(not visible, since coincides with period-doubling boundary for rotations 3:1-3:1).

As we pass through the resonance frequency of mass M µ = 1, for higher amplitudes

of excitation the only synchronous solution includes anti-phase 2:1 rotations depicted in

Fig. 3.7(c,d) . After the resonance, for amplitudes of excitation above q ≈ 0.12, only

asynchronous solutions are observed. Below this value, many small synchronous regions

were found. This includes in-phase 1:1 oscillations and two regions of in-phase 2:1 oscil-

lations, together with two regions of in-phase 2:1 rotations. The region of 1:1 oscillations

is enclosed by Saddle-Node, Neimark-Sacker and pitchfork SB2 bifurcation curves. Os-

cillatory 2:1 motion destabilizes through pitchfork SB1 from above and Neimark-Sacker

curves from below. This solution coexists for small range of parameters with 2:1 rotations,

which motion is destabilized by period doubling and Neimark-Sacker from the left, and

from the right by pitchfork SB2, Neimark-Sacker and period doubling curves. We observe

the excellent correlation in these regions between the results from numerical continuation

and direct integration.
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3.4 1 parameter continuation

In this subsection we show one parameter continuation for four periodic solutions (two

oscillating and two rotational), as a bifurcation parameter we choose the frequency of exci-

tation. In Figure 3.8 (a-d) we present the synchronized oscillating periodic solutions, their

regions of stability are shown in Fig. 3.7 (a). Considered system (2.9-2.13) given by �ve

second order ODEs, hence we have ten dimensional phase space and at least �ve �gures

(amplitude of each degree) show its complete dynamics. To decrease it we focus on the

dynamics of one pendula (the second pendula has the same amplitude in the synchronized

state) and mass M . The �rst presented periodic solutions in Fig. 3.8(a,b) is antiphase

2:1-1:1 oscillations, in previous subsection we show that this solution is destabilized by

Neimark-Sacker bifurcation from the right and from the left by pitchfork symmetry brak-

ing SB2. Changing the branch at pitchfork bifurcation enables us to �nd another stable

periodic branch of asynchronized oscillations 2:1-1:1, that looses its stability through the

Saddle-Node bifurcation. After pitchfork symmetry breaking SB2 bifurcation the solution

of one pendulum is located at upper branch (see Fig. 3.8(b)) and the second pendulum

on lower branch or vice-versa. The periodic oscillations 2:1-1:1, shown in Fig. 3.8 (c,d),

present much richer scenario than other solutions. These oscillations destabilize from

both sides through pitchfork SB2 bifurcation. When we switch branch in left SB2 point,

we �nd periodic stable solution of asynchronized oscillations 2:1-1:1 when the amplitudes

of pendulas reach zero their motion stops and in the opposite direction the stability is

lost in pitchfork SB2 bifurcation. Another change of branch allows us to observe another

asynchronous periodic solution, for which pendulum 1 oscillates 2:1, pendulum 2 is at

rest (not shown here) and pendula masses oscillate 1:1 in asynchronized manner. One

end of this stable solution destabilizes through Saddle-Node bifurcation and the second

one by pitchfork SB2 bifurcation. As the frequency of excitation increases the stability of

this solution is regained through pitchfork SB2 bifurcation and lost again through Saddle-

Node bifurcation. Note that for the mass M , the bifurcation points that are responsible

for the destabilization of periodic solutions for synchronized in-phase oscillations 2:1-1:1

and nonsynchronized oscillations 2:1-1:1, are placed very close to each other. When we

switch the branch in the right SB2 bifurcation point of the synchronized in-phase os-

cillations 2:1-1:1, we �nd asynchronized solution of oscillations 2:1-1-1 that persists for

small interval of frequency of excitation. It destabilizes from above and below through

period-doubling bifurcation points. Switching the branch in lower PD point enables us

to observe non-synchronized oscillations 4:1-2:1, that destabilize through Neimark-Sacker

bifurcation. The bifurcation diagram, shown in Fig. 3.9 (a-b), shows 3:1-3:1 rotational

periodic solutions for q = 0.654. In contary to the previous cases on the horizontal axis

we plot the velocity amplitude (to hold a physical meaning). The stability region of this
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solution is shown in Fig. 3.7 (e) This solution looses its stability through period-doubling

and pitchfork SB2 bifurcation. Switching the branch in the period-doubling bifurcation

point, allows to observe cascade of period doublings, which lead us to two branches of

synchronized periodic 6:1-6:1 rotational solution, that looses its stability through period-

doubling bifurcation. When we switch branch in these PD points, we reach two branches

of synchronized periodic 12:1-12:1 rotational solutions. They are stable through very

small range of frequency of excitation, loosing stability as a result of Neimark-Sacker bi-

furcation. After switching the branch in right pitchfork SB2 bifurcation point, we observe

asynchronized rotations 3:1-3:1, that are stable in very small interval, �nally loosing its

stability through Saddle-Node bifurcation. Finally we show in Fig. 3.9 (c-d) synchro-

nized rotations 4:1-1:1, that loose stability through pitchfork symmetry braking from the

right and left. Switching the branch in both SB2 bifurcation points allows us to �nd asyn-

chronous rotations 4:1-4:1, that are stable in very small interval of frequency of excitation,

loosing �nally stability through Saddle-Node bifurcation.
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Conclusions

In the system of two planar elastic pendula suspended on the excited linear oscillator one

can observe both in-phase and anti-phase synchronization pendula. In-phase and anti-

phase synchronous states always co-exist. Pendula can synchronize during the oscillatory

and rotational motion but only when their behavior is periodic. We have not observed the

synchronization of the chaotically behaving pendula. This result is contrary to the great

number of chaos synchronization examples [17, 16, 9] but con�rms the results obtained

in [3] where it has been shown that the forced Du�ng's oscillators mounted to the elastic

beam can synchronize only after becoming periodic. The synchronization of the chaotic

motion of the pendula is impossible as the excited oscillator transfers the same signal

to both pendula which cannot di�erently modify the pendula's motion. We also have

not observed in-phase or anti-phase synchronization of the pendula when masses m2 and

m3 are in anti-phase. In this case the pendula in-phase or anti-phase synchronization is

impossible as the pendula have di�erent lengths.

We show two dimensional bifurcation diagrams with the most representative periodic

solutions in the considered system. In the neighborhood of the linear resonances of sub-

systems we have rich dynamics with both periodic and chaotic attractors. Our results are

robust as they exit in the wide range of system parameters, especially two dimensional

bifurcation diagram can be used as a scheme of bifurcations in the class of systems similar

to investigated in this thesis.
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