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Dynamics of double pendulum with parametric vertical excitation 

Preface    This master of science thesis is a part of “Project TEAM of Foundation for Polish Science” realising the investigation and analysis of the project “Synchronization of Mechanical Systems Coupled through Elastic Structure”. It is supported by “Innovative Economy: National Cohesion Strategy”. The programme is financed by “Foundation for Polish Science” from the European funds as the plan of “European Regional Development Fund”. The project is mainly focused on the following issues:  
� Identification of possible synchronous responses of coupled oscillators, and existence of synchronous clusters as well 
� Dynamical analysis of identical coupled systems suspended on elastic structure in context of the energy transfer between systems 
� Investigation of phase or frequency synchronization effects in groups of coupled non-identical systems  
� Developing methods of motion stability control of considered systems 
� Investigation of time delay effects in analyzed systems. 
� Developing the idea of energy extraction from ocean waves using a series of rotating pendulums. 
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1.  Introduction  
  The pendulum is a very well-known object. It recalls the construction of the old-fashioned mechanical clocks, which even in times of quartz timepieces, digital and atomic ones remain relatively common. The pendulum`s attraction and interest is associated with the familiar regularity of its swings, and as the consequence its bond to the fundamental natural force of gravity.   The pendulum might be spotted in variety of different areas, starting from the most obvious mechanics, through the usage of metronome by music schools, ending on the film by Umberto Eco Foucault`s Pendulum.    The history of the pendulum might be begin with a recall of the tale of Galileo`s observation of the swinging chandeliers in the cathedral in Pisa. “By using his own heart rate as a clock, Galileo presumably made the quantitative observation that, for a given pendulum, the time period of a swing was independent of the amplitude of the pendulum`s displacement. Like many other seminal observations in science, this one was only an approximation of reality. Yet, it had the main ingredients of the scientific enterprise; observation, analysis and conclusion. Galileo was one of the first of the modern scientists, and the pendulum was among the first objects of scientific enquiry” [1].   There is a wide range of pendulums. The very first and the most common is a simple pendulum, characterised by the small amplitude. Neglecting the energy loss factors, there is no need for energizing this device through the forcing mechanisms. Taking a relatively small swing of the pendulum, makes it possible to linearize the equations and thus formulate the solution of the motion of this device. By adding another simple pendulum to the end of the first one, we obtain more complex system (series connection of the pendulums). Further introduction of complicating factors like elastic joint, energy losses and finally subjected the whole system to the periodic oscillation might lead to the chaotic motion, what is the subject of this paper. 
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1.1  The examined system 

 

   This master of science thesis is to investigate the tendencies and behaviour of the double pendulum subjected to the parametric, vertical excitation. The system of investigation is presented in the figure 1. 
 

 

 
Fig. 1 Double pendulum system.    The examined system consists of 2 concentrated masses attached to the ends of the joints. The joints are assumed to be massless, the first one is elastic, whereas the second one has the fixed length.  

 

1.2  Aim of the thesis 

 

 

  The aim of this paper is to numerically investigate and analyse the system of  double pendulum with parametric, vertical excitation, presented in chapter 7.2. The research include influence of the selected control parameters on the behaviour of the double pendulum system as well as the bifurcation analysis carried for different control parameters. Additionally, the research includes presentation of the behaviour of the system using Poincaré maps, phase portraits and time diagrams. 
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2. Basic concepts of physics and mathematics     In this chapter basic definitions and theorems, used in the further part of this paper, are introduced. They are put in order of appearance and complexity. There are subchapters devoted to physical and mathematical section.    
 

 

2.1 Concepts of physics 

 

 

 Generalised coordinatesGeneralised coordinatesGeneralised coordinatesGeneralised coordinates    (definition 1, [6])      Generalised coordinates is the set of independent coordinates explicitly defining position of the system, number of generalised coordinates is equal to the number of degrees of freedom of the system.     TiesTiesTiesTies    (definition 2, [6])    The factors resulting in limitation of the motion of the material points are called ties. The limitation of the freedom of movement of the system consisting of ? material points can be analytically expressed by means of equations and inequalities presented below:  @A = (CDE, CDF, … , CDH, I) = 0        for        J = (1, 2, … , K), (2.1) or φE = (CDE, CDF, … , CDH, I)  ≤ 0        for        N = (1, 2, … , O), (2.2)  are called equations of ties.     
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Mobility of the systemMobility of the systemMobility of the systemMobility of the system    (definition 3, [6],[8])      By the mobility of the system we specify its number of degrees of freedom. This might be understood as a number of independent input motions, either translational or rotational ones, defining the orientation of the body or system. There is a relation between an arbitrary point of the system and the remaining ones. Namely, there are n – 1 distances between the points. Then, subsequently free rigid body has the number of degrees of freedom, given by the equation:  
@ = 3? −  ?(? − 1)2 .  (2.3)     Kinetic energyKinetic energyKinetic energyKinetic energy    (definition 4, [6])   The quantity given by (2.4) is called the kinetic energy of the material point.  

V =  WXDF2 . (2.4) Total kinetic energyTotal kinetic energyTotal kinetic energyTotal kinetic energy    (definition 5, [6])      The quantity given by (2.5) is called the total kinetic energy of the material point.  
V =  Z W[XD[F2 .\

[]E  
(2.5)  Potential energyPotential energyPotential energyPotential energy    (definition 6, [4],[6])      If there exists function ^(CD, I) such that :  _̂D =  −`Cab^ = − c dD e^ef +  hD e^ei +  J_D  e^eJj, 
(2.6)  then it is said, that force kD is potential and function ^(CD, I) is called the potential of that force. We see that, the potential force is only dependent on  the position and time kD(CD, I).  If the potential is not dependent on the time - ^(CD), then it is said, that 
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the force kD is conservative and then ^(CD) is called the potential energy of the material point in position CD in the field of force kD(CD).    Considering distances significantly smaller than radius of the earth, then one can assume, that gravitational field is uniform, of vertical direction and backward sense. The potential energy of mass W, placed over distance ℎ, with respect to preselected frame of reference is equal to the product of mass W, gravitational acceleration ` and that distance ℎ:  ^ =  W`ℎ. (2.7)   Taking into consideration an elastic element obeys the Hook`s law, there is the proportionality of the acting force to its elongation. Hence, when the length of the (for instance) spring is given by  a +  f , then the force in spring is as follows:  k =  J f o, (2.8) where p is a versor.   The constant J is called the stiffness of the elastic element. The force k is positive, when f is positive and negative. In case of f being negative, it shows the tendency of the spring to return to the unconstrained length, regardless the fact whether it was stretched or compressed.    The work done by the force acting on the elastic element, while its length is changed from a   to  a +  f, is given by:  
q −rso tso =  − JfF2 .u

v  
(2.9)  The above expression shows, that force in the elastic element is a conservative force of the following potential energy:  

^ =  JfF2 . (2.10)     
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 Conservation of energyConservation of energyConservation of energyConservation of energy    (definition 7, [4])      In conservative systems, sum of kinetic and potential energy is constant.  V +  ^ =  xy?zI. (2.11)  
2.2 Concepts of mathematics 

   Ordinary dOrdinary dOrdinary dOrdinary differential equationsifferential equationsifferential equationsifferential equations     (definition 8, [5])      Ordinary differential equation (ODE) is the equation including an independent variable f, unknown function i and its derivatives i|, i||, … , i(\).  k}f, i, i|, … , i(\)~ =  0, (2.12) where k:   �\�F    →    �.   The solution of the equation given by (2.20) in [a, �] is the function of the following properties:  � k}f, i(f), i|(f), … , i(\)(f)~ =  0u∈[�,�] . 
(2.13)     Lagrange`s equations of the second kindLagrange`s equations of the second kindLagrange`s equations of the second kindLagrange`s equations of the second kind    (definition 9, [4])      Let us consider the system of � degrees of freedom, described by � generalised coordinates  �[ ,   p = 1, 2, … , ?. The Lagrange`s equations of the second kind are formulated as follows:  bbI c eVe��[j  −  eVe�[  +  e�e��[  +  e^e�[ =  �[, (2.14)  
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where V is the kinetic energy and V is potential energy of the system. The function � is the Rayleigh dissipation function, whereas �[ is the generalised external force applied to the system. The value of �[ can be expressed as follows:  
�[ =  Z k� eC�e�[�  +   Z �� e��e��[� , 

(2.15)  where k�  and ��  are external force and external moment vectors respectively. The index N indicates, which of the forces (or moments) are considered, C� is the position vector with respect to the point of application of the force k�;  ��is the angular velocity of the system with respect to the application point of the moment �� . Products presented in the equation (2.15) are scalar values. 
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3. Simple pendulum    According to [1], simple pendulum can bea real pendulum. It is build with a concentrated mass negligible mass and of initial length pivot point, as shown in fig. 2

  If the pendulum is displaced from its eqpotential energy is turned into kinetic, it will oscillate around equilibrium position with a constant amplitude for infinitely long time to the harmonic motion. As mentioned, the frictionless pivot point is assumed and no air resistance to motion. According to the Newton`s second law, force is equal to mass and acceleration product 

where � is the angular displacement of the pendulum from the equilibrium position and ` is the gravitational acceleration. Considering very small amplitude of oscillation, zp? � �  �, after simplificati 
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Simple pendulum 

, simple pendulum can be treated as the perfect model of real pendulum. It is build with a concentrated mass m, attached to a rod with negligible mass and of initial length N. Whole system is fastened to a2. 

 
Fig. 2 Simple pendulum. 

If the pendulum is displaced from its equilibrium position and releasedpotential energy is turned into kinetic, it will oscillate around equilibrium position with a constant amplitude for infinitely long time – the pendulum will be subjected to the harmonic motion. As mentioned, the frictionless pivot point is assumed and no air resistance to motion. According to the Newton`s second law, force is equal to and acceleration product, given by the equation: 
WN bF�bIF =  −W` zp?�, 

is the angular displacement of the pendulum from the equilibrium is the gravitational acceleration. Considering very small amplitude , after simplification we obtain: 
 bF�bIF +  Ǹ � = 0. 

10 

 

treated as the perfect model of , attached to a rod with . Whole system is fastened to a frictionless 

uilibrium position and released, i.e. potential energy is turned into kinetic, it will oscillate around equilibrium position will be subjected to the harmonic motion. As mentioned, the frictionless pivot point is assumed and no air resistance to motion. According to the Newton`s second law, force is equal to 

(3.1)  is the angular displacement of the pendulum from the equilibrium is the gravitational acceleration. Considering very small amplitude 

(3.2) 
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Solving the above equation for θ, we receive:  � =  �v zp?(�I +  �v), (3.3)  where �v is the angular amplitude of the swing and �v is the initial phase.  
� =  � Ǹ  , (3.4)  � is the angular frequency of the pendulum, and its period V is given by the following formula (linearized approximation):  

V =  2�� Ǹ  , 
(3.5)  It should be pointed that for a given pendulum its period is constant and is only dependent on its length.    Taking angular displacement � and its derivative – angular velocity �� , respectively, as the functions of time we receive:  � =  �v sin(�I + �v), (3.6) �� =  �v� cos(�I +  �v),  (3.7)  and now it is possible to create graph depicting their dependencies – time series.  
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Fig. 3 Time series for angular displacement and angular velocity [1].   As shown in figure 3, the displacement and velocity are out of phase by 90 degrees, it means that, if one quantity reaches its maximum, the other one has value of zero – when pendulum has maximum velocity, its displacement is equal to zero and vice versa. 
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4. Double pendulum   Basing on [1], let us consider the system presented in figure 4:  

 
Fig. 4 Double pendulum. 

  It consist of two simple pendulums connected in series in such a manner that the second pendulum is attached to the bob of the first one [7]. While we are dealing with two angular degrees of freedom, denoted as �E and �F, the behaviour of the system will more complicated than in case of the simple pendulum. Due to the occurrence of the additional degree of freedom, as well as more complex motion, the system is prone to chaotic motion and very sensitive to initial conditions [1].    The potential energy of the double pendulum is calculated as the reference of the lifted pendulum to the zero potential energy state at equilibrium position, thus the equation takes the following form:  ^ =  WE`NE(1 − xyz�E) +  WF`[NE(1 − xyz�E) +  NF(1 − xyz�F)].  (4.1)   In order to formulate kinetic energy equation will make use of derivation of f and i coordinates of the system, which are presented below:  fF =  NEzp?�E +  NFzp?�F,  iF =  −NExyz�E −  NFxyz�F.  (4.2) 
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After derivation and summing up the expressions, we are able to specify the final form of the kinetic energy:  
� =  12 WENEF��EF +  12 WFNEF��EF +  12 WFNFF��FF +  WFNENF cos(�E −  �F) ��E��F. (4.3)  The simplest Lagrangian equation is as follows:  bbI � e�b��[� −  c e�b�[j = 0. 

(4.4)  Using the Lagrange`s equations and making adequate substitutions we may formulate coupled equations of motion for the system given:  
��E =  − NF�NE ��F cos(�E − �F) − NF�NE ��FF sin(�E − �F) − ǸE  zp?�E, 

(4.5) 
��F =  − NENF ��E cos(�E − �F) +  NENF ��EF sin(�E − �F) −  ǸF  zp?�F, 

 (4.6)  where: � =  1 +  (WE + WF).   To decompose angular acceleration terms we substitute them by placing the second equation  in the first one and vice-versa, we receive:  
��E =  `(sin �F cos(�E −  �F) − � sin �E)  − }NF��FF + NE��EF cos(�E −  �F)~ sin(�E − �F)NE(� −  cosF(�E −  �F))  ,  (4.7)  
��F =  `�(sin �E cos(�E −  �F) − sin �F)  +  }�NE��EF + NF��FF cos(�E −  �F)~ sin(�E − �F)NF(� − cosF(�E −  �F))  .  (4.8)  Introducing new variables, �E and �F, allows us to formulate four equations, making it possible to facilitate numerical solution.  
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�� E =  `(sin �F cos(�E −

 

�� F =  `�(sin �E cos(�E

 To obtain, chaotic behaviour, according to the and exemplary initial values of angular displacements and angular velocities �E =  0.5 ;  �F  =  2.0 ; � 

Fig. 5 Time series of the

Double pendulum 
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��E = �E, 
( − �F) − � sin �E)  − (NF�FF + NE�EF cos(�E −  �NE(� − cosF(�E − �F))

��F = �F, 

( −  �F) − sin �F)  + (�NE�EF + NF�FF cos(�E − NF(� −  cosF(�E − �F)) 
haotic behaviour, according to the [1], we introduce mass and exemplary initial values of angular displacements and angular velocities �E  =  0 ;  �F  =  0. 

Time series of the angular velocity of the lower mass of the double pendulum 
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(4.11) 
�F)) sin(�E −  �F) , 

(4.9) 
 (4.12)   �F)) sin(�E − �F) . 
(4.10) 

, we introduce mass WF  �  WE and exemplary initial values of angular displacements and angular velocities 

 
angular velocity of the lower mass of the double pendulum [1]. 
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5. Introduction to dynamics       Phase spacePhase spacePhase spacePhase space    (definition 10, [2],[4])   Let us consider the following differential equations:  
 dxdt =  @(f) , f( Iv) =  fv, 

     (5.1)  where  f ∈ � ⊂  ℝ\, I ∈  ℝ�. D is open subset of ℝ\. We call the system autonomus system of the n-th order, since time is not existent explicitely on right side of the given equation. For instance, free oscillations are considered as autonomous system, due to the fact that, energy is not delivered to the oscillated system. Analogously, the set of equations:  
 dxdt =  @(f, I) , f( Iv) =  fv, 

      (5.2)  where  f ∈ � ⊂  ℝ\, I ∈  ℝ�, in which time is given implicitly on the right side of the equation. Such a system is called nonautonomous system of the n-th order. The typical example of this system are oscillations with external excitation, wherein energy is delivered to the system. If there exists such T > 0, that:  @(f, I) =  @(f, I +  V), (5.3)  for every x and t, then the set of equations is called periodical, with period equal to V.    Nonautonomous, periodical set of equations of n-th order and period V can always be replaced with autonomous system of (n+1)-th order, under the condition that, additional variable � =  F¡¢£  is introduced. Then, the corresponding autonomous system has the following form:  
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 dxdt =  @ �f, � c I2�j� , f( Iv) =  fv ; 
    (5.4)   

 dθdt =  2πT , �(Iv) = 2�IvV  .      (5.5)   The set D is called phase space of the system. In most of the considered systems, the phase space is n-th dimensional real space or its subspace, in the theory of oscillations.   The dynamic system defined by the equation (5.1) is such a mapping:  Φ ∶   ℝ�  × � →  ℝ\,     (5.6)  defined by the solution f(I) of the mentioned set of equations. The right side of this equation is a function f, defining vector field in ℝ\:  @ ∶   ℝ\ →  ℝ\.      (5.7)  In order to show the dependency of the autonomous system equation on the initial conditions in the explicit form, the solution is written in the form ɸ¢(fv) frequently. The phase flux is represented by the mapping:  Φ¨ ∶   ℝ\ →  ℝ\.     (5.8)   According to [2], the phase space of the dynamic system is an abstract space with orthogonal coordinates. Each coordinate represents parameter necessary to define the state of the system, for example, in order to define state of a particle moving rectilinearly we need to variables – f for the position and f�  for the velocity. Hence, phase space is 2 dimensional. However, if the particle is in uniform rectilinear motion, then to define its state, only 1 variable is sufficient – x, and as the consequence the phase space is 1 dimensional. Generally, the phase space of the dynamic system is ? − dimensional, depending on the dimension of the system.    Let us consider harmonic oscillator, characterised by the following equation:  f�  +  f =  0,       (5.9) 
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with initial conditions f(0equation, given by (5.1), weobtaining:  

Then, the solution of the equation (
 f

f
Hence, the dynamic system defined by the equation mapping: 
 Φ}I, fv, f�v~ =  ( I, fv

where: 

The solution of the equation ℝ� ×  ℝF, as depicted in figure  

Fig. 6 Graphical representation of solution of the harmonic oscillator equation. 
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0)  =  fv and f� (0)  =  f�v. In order to receive set of ), we introduce new variables f =  fE and 
f�E = fF,       f�F = −fE.       equation (5.9) has the following form: 

fE = fv xyz(I) +  f�v zp?(I),      fF = −fv zp?(I) +  f�v xyz(I).     
the dynamic system defined by the equation (5.9) is given by the following 

( v xyz(I) +  f�v zp?(I) , −fv zp?(I) + f�v xyz(

Φ ∶   ℝ�  ×   ℝF →  ℝF. 
The solution of the equation (5.9) might be represented in 3 dimensional space figure 6.  

Graphical representation of solution of the harmonic oscillator equation.
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. In order to receive set of and f�  =  fF , 

 (5.10) 
 (5.11) 

 (5.12) 
 (5.13)  is given by the following 
(I) ), (5.14)  

(5.15)  might be represented in 3 dimensional space 
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Dividing the equation (5.11) by (5.10 

and after integrating (space ℝF:  
 
 And its graphical representation 

    TrajectoryTrajectoryTrajectoryTrajectory    (definition 11  The equation analogical to defined by the set of following form:  

If  @E(f)  © 0, then it is possible to replace componential part with a new independent variable. In such a case we obtain:
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(5.11) by (5.10), we receive: 
bfFbfE =  − fEfF, 

integrating (5.16), we receive equations forming set of circles in phase 
fEF  +  fFF  = x,       

x =  (fE(0))F  +  (fF(0))F.     
And its graphical representation in figure 7: 

 
Fig. 7 Set of circles in phase space ª«. 

11, [4]) 
The equation analogical to the (5.16) can be written for general case, defined by the set of equations (5.1). One can present mentioned set in the 

bf[bI =  @[(f), p = 1, 2, … , ?.    
then it is possible to replace componential part fwith a new independent variable. In such a case we obtain: 
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(5.16)  receive equations forming set of circles in phase 

  (5.17) 
  (5.18) 

 

can be written for general case, One can present mentioned set in the 

  (5.19)  fE of the vector f 
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bfFbI =  − @F(f)@E(f), 
       …  bf\bI =  @\(f)@E(f). 

  (5.20)  The solution of the equations (5.20) in phase space is called trajectory (orbit) of the system. According to the theorem of existence and explicity of the solution of the differential equation, phase trajectories cannot intersect.    Critical pointCritical pointCritical pointCritical point    (definition 12, [4])   In order to receive equations (5.21) it is considered that @E(f)  © 0. However, if @E(f) = 0 and @F(f)  © 0, then as the independent variable fF should be chosen. if @F(f) = 0 and @¬(f)  © 0, then variable f¬ should be chosen, etc. As shown, this construction is impossible in points a =  ( aE , … , a\ )   ∈   ℝ\ , such  that:  @E(a)  =  @F(a)  =  …  =  @\(a)  =  0,   (5.21)  The point such that a  ∈  ℝ\ and @(a)   =   0 is called the critical point of the set of equations (5.1). The critical point corresponds to the equilibrium position of the dynamic system, while it can be verified, that f(I)   =   a  fulfills equations of motion for every value of I [4].   AttracAttracAttracAttractortortortor    (definition 13, [4],[9])      An attractor of a dynamical system is a subset of the state space to which orbits originating from typical initial conditions tend as time increases. For dynamical systems it is very frequent to have more than one attractor. For each such attractor, its basin of attraction is the set of initial conditions leading to long-time behaviour that approaches that attractor. Thus the qualitative behaviour of the long-time motion of a given system can be fundamentally different depending on which basin of attraction the initial condition lies in (e.g., attractors can correspond to periodic, quasiperiodic or chaotic behaviours of different types). Regarding a basin of attraction as a region in the state space, it has been found that 
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the basic topological structure of such regions can varysystem.    Let us consider the following equation: 

 It can be proved, that fposition. For fv  ©  0 the  

 which is different for f 

Whereas for fv �  0 the solution is   The above example has proved that, for the critical point, when time is going to infinity. Such a phenomena is called attraction and the subset of the phase space, towards which solution of system is heading for, is called attractor.
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basic topological structure of such regions can vary greatly from system to 
Let us consider the following equation: 

 dxdt =  −fF, f( 0) =  fv.    
f =  0  is the critical point and f(I)  =  0  the equation (5.22) has the solution in form:

f(I) =  c 1fv +  IjE , 
fv >  0 and fv �  0. For the case fv >  0, we have :

lim¢→® f(I) = 0. 
the solution is unbounded (fig. 8). 

The above example has proved that, for fv >  0 the solution is tending to when time is going to infinity. Such a phenomena is called attraction and the subset of the phase space, towards which solution of system is heading for, is called attractor. 

 
Fig. 8 Unbounded solution. 
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greatly from system to 

  (5.22) 
  is the equilibrium has the solution in form: 

(5.23) 
, we have : 

(5.24)  
the solution is tending to when time is going to infinity. Such a phenomena is called attraction and the subset of the phase space, towards which solution of system is 
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Limit cycleLimit cycleLimit cycleLimit cycle    (definition 14, [4])      Let us consider the general case, when f =  Φ(I) is the solution of the set of equations given by (5.1) and let us introduce the constant V, such that:  Φ(I) =  Φ(I + V), (5.25)  for every I, then Φ(I) is called periodic solution of period V. A closed curve in the phase space corresponds to the periodic solution.   The periodic solutions of the autonomous system are also called limit cycles (see fig. 12, chapter 6.1). If the limit cycle is attainable by the solution, when  I → ∞, then it is stable and it is the attractor. Whereas, when  the limit cycle has this feature for I → − ∞, then it is unstable and is unstable attractor [4].   Periodic functionPeriodic functionPeriodic functionPeriodic function    (definition 15, [10])   A function @(f) is said to be periodic, with period K, if:  @(f) =  @(f + ?K), (5.26)  for ? =  1, 2, . . . , ? .   QQQQuasiperiodic uasiperiodic uasiperiodic uasiperiodic functionfunctionfunctionfunction (definition 16, [6])   The quasiperiodic function is called such a function:  ±(I) =  k(�EI, … , �\I), (5.27)  where: k ∶  ℝ\  →  ℝ, is  2�-periodic function considering every variable, and frequencies �² , ³ = 1, … , ? are independent, i.e satisfying the relation:  
Z a²�² = 0, a²  ∈  ℚ,   ³ = 1, … , ?     ⇒    a² = 0, ³ = 1, … , ? \
²]E  . 

(5.28)     
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Chaotic functionChaotic functionChaotic functionChaotic function (definition     Let us consider the following representations: (¶, b) - metric space · ∶ ¶  ¸ ¶ - continuous function(¶, ·) – dynamic system with di¶ - phase space · - dynamic of system (¹ ·\(f)º\ ∈» =  ¹f, ·(f)  Point f ¼ ¶ is called periodic·A(f)  ©  f for J = 1,2,  The dynamic system function, if the following assumptions are fulfilled: 
� transitivity (T)
� sensitivity (W)
� density of periodic points (O)  

� Transitivity (T)   The dynamic system pair of nonempty and open sets  ·\(½) ¾ ¿ © 0.  
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(definition 17, [11]) 
r the following representations: 

continuous function dynamic system with discrete time 
(¶, ·) ( ), ·F(f), … º - trajectory of points f ∈ ¶ 

is called periodic, of period ? ∈  �, ? À 2, , … , ? − 1. 
The dynamic system (¶, ·) is called chaotic and dynamic function, if the following assumptions are fulfilled: 

transitivity (T) sensitivity (W) ity of periodic points (O) 

 
The dynamic system (¶, ·) has the transitivity feature (T), if for an arbitrary pair of nonempty and open sets ½, ¿  in  ¶, there exists number ? 

Fig. 9 Transitivity. 

23 

Dynamics of double pendulum with parametric vertical excitation 

, if ·\(f)  =  f and 
 · is called chaotic 

has the transitivity feature (T), if for an arbitrary   ∈   �, such that: 
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� Density of periodic points (O)  The dynamic system periodic points of dynamic · 

 

 

� Sensitivity (W)   The dynamic system number Á >  0, that for every and ? À 0, such that: b(·\(f), ·\(i)) >  Á .   
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ensity of periodic points (O) 
The dynamic system (¶, ·) has the feature of density of periodic points, if · create dense subset of ¶. 

Fig. 10 Density of periodic points. 

The dynamic system (¶, ·) is said to be sensitive, if there exists such a , that for every f  ∈   ¶ and its neighbourhood Âu, there is 

Fig. 11 Sensitivity. 
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has the feature of density of periodic points, if 

 

is said to be sensitive, if there exists such a , there is i  ∈   Âu 

 



Investigation tools of nonlinear dynamics 

25 

Dynamics of double pendulum with parametric vertical excitation 

6. Investigation tools of nonlinear dynamics     As the tools for chaos detection Poincaré maps and bifurcation diagrams are used. Both described below according to [2],[3],[4].  
6.1  Poincaré maps 

 

  The theoretical base for Poincaré maps was introduced by Jules Henri Poincaré [3]. The widespread use of computer graphics facilities to examine chaotic behaviour in dynamical systems has led to the method of Poincaré maps becoming one of the most popular and the most illustrative method of describing ‘strange attractors’.    During investigations of the dynamical system we are particularly interested in the asymptotic behaviour of the phase trajectories. This allows us to investigate the behaviour of the phase trajectories points of the specially selected time periods. The Poincaré maps consists of these points.    The definition of Poincaré map is different for autonomous and nonautonomous systems. At first, let us assume, that considered dynamical system is defined by the equation: 
 

 bfbI =  @(f) , f ∈  ℝ\ ,      (6.1)    and has limit cycle, as depicted in figure 12. Let f∗ be the point placed at the limit cycle and ∑  is the (n-1)-dimensional area, throughout which limit cycle is cut in point f∗. Phase trajectory beginning at point f cuts again the area  ∑  after time interval equal to period of limit cycle T. Phase trajectories starting in the vicinity of point f∗ −  È, placed on the area  ∑  , after period T cut the area in vicinity of f∗ −  ^. Hence, equation of motion (6.1) and the area ∑  define mapping P, characterising vicinity  È ⊂  ∑   of point f∗ onto vicinity V of point f∗. Such a mapping is denoted as Poincaré map for autonomous system. 
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 Let us consider dynamic system, defined by the following equation: 

The Poincaré map may be defined as the set: É }fE(I
 Having defined the Poincaréproperly, since the phase trajectory can never transect area figure 13). In actual euclidean phase space for dynamic system, having attractor different than critical point, there is a possibility to specify manner, that Poincaré map is defined properly 
 

Fig. 13 Phase trajectory transecting areas  It should be taken into consideration, that above rules is not interchangeable construction. It may happen that, trajectory 
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Fig. 12 Limit cycle. 

Let us consider dynamic system, defined by the following equation: 
 bfbI =  @(f) , f ∈  ℝ¬ .    map may be defined as the set: 

} (I),  fF(I)~| ¢]¢ËÌ , f¬(IA) =  xy?zI. 
Poincaré map in such a manner we cannot assume it is done properly, since the phase trajectory can never transect area ∑  (for instance In actual euclidean phase space for dynamic system, having attractor different than critical point, there is a possibility to specify map is defined properly [4]. 

 

Phase trajectory transecting areas ∑  Í and ∑  «. 

aken into consideration, that Poincaré map obtained according to the above rules is not interchangeable construction. It may happen that, trajectory 
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  (6.2) 

 (6.3) 
we cannot assume it is done (for instance ∑  ¬ in In actual euclidean phase space for dynamic system, having the attractor different than critical point, there is a possibility to specify ∑  in such a 

map obtained according to the above rules is not interchangeable construction. It may happen that, trajectory 
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never transects specified area many possible choices f  Let us define the 
 

 where @(f, I) is periodic function characterised by period T. The sysby equation (6.4) mightcylindrical phase space 

  Considering n-dimensional area  Z
 After time equal to the period T, phase trajectory The mapping defined as: 
 and mapping f(I) in f(   
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never transects specified area ∑  , since for the dynamic system givenmany possible choices for ∑  , as shown in figure 13. 
Let us define the Poincaré map for nonautonomous systems, given by:

 bfbI =  @(f, I) , f ∈  ℝ  ,  
is periodic function characterised by period T. The sys) might be denoted as (? + 1)-dimensional autoncylindrical phase space  ℝ\  ×  ·E. 

 
Fig. 14 Cylindrical phase space. 

dimensional area ∑  ∈   ℝ\  ×  ·E : 
Z = ¹ (f , �) ∈   ℝ\  ×  ·E, Î =  Îv º.  

After time equal to the period T, phase trajectory f(I) transects area The mapping defined as: 
Ï ∶  Ð →  Ð  ( ℝ\  → ℝ\ ),    

(I + V) is called Poincaré map. 
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dynamic system given, there are 
map for nonautonomous systems, given by: 

  (6.4) 
is periodic function characterised by period T. The system specified dimensional autonomous system of 

º   (6.5) 
transects area ∑  (fig. 14). 

  (6.6) 
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6.2 Bifurcations       A concept of bifurcations was introduced into nonlinear dynamics by Poincaré. Bifurcation indicates a qualitative change of the features of a dynamical system, such as the solution of nonlinear differential equation that describes the system. Let us consider the following, nonlinear differential equation:  bfbI = @(f, a), (6.7)  where f ∈  ℝ\, a ∈ ℝ. The bifurcation takes place, when the solution of the above equation qualitatively changes its character according to changes of the parameter a. The magnitude of a =  aÑ , for which this change occurs is called bifurcation point (locations at which bifurcations occur, that are in the state-control space, formed by state variables and control parameters). By definition local bifurcation is a qualitative change occurring in the neighbourhood of a fixed point or a periodic solution of the system. Any other qualitative change is known as global bifurcation. Generally, it is said, that the theory of bifurcation is the science investigating how the number or character of attractors of the equation (6.7) changes in relation to changes of parameter a [3].  Basically, bifurcations are divided into continuous and discontinuous (sometimes called catastrophic) bifurcations. The division depends on the continuous or discontinuous variation of the state of the system , when the control parameter is changed gradually, through its critical value. In continuous-time systems, such as defined by (6.7), when at least one of the control parameters corresponding to a stable fixed point is altered , the fixed point may lose its stability through one of the following bifurcations:  
� pitchfork bifurcation 
� transcritical bifurcation 
� saddle-node bifurcation 
� Hopf bifurcation.   The first three types of bifurcations are classified as the static ones, while at the bifurcation points related to them, only branches of fixed points or static solutions meet. Considering the Hopf bifurcation, branches of fixed points and branches of periodic solutions meet, and that is why these bifurcations are defined as dynamical.  Below, types of bifuractions are presented, basing on [2]. 
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6.2.1 Pitchfork bifurcation       Let us investigate the bifurcation occurring in the dynamical system, described by the following equation:  bfbI = af − �f¬, (6.8) where a, � are real constants. It can be proved, that points:  f = 0   for  a ∈  ℝ,  as well as  
f =  ± �a�  , for a, � ∈  ℝ , a� > 0,  are the critical points of the equation (6.8).  In order to investigate stability of the point f = 0, let us consider the linearised equation:  bfbI = af. (6.9)  The solution of the above equation takes the following form:  f(I) =  fvÓ� ¢ ,  where fv = f(0) is the initial condition. Hence, one receives, that f = 0 is the stable critical point, under the condition that a ≤ 0.    The nonlinear equation (6.9) can be solved substituting 1/ fF  for f. Then, the linear equation, with respect to 1/ fF is obtained:   1f¬  bfbI =  afF −  � (6.10) or 
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 with the solutions formulated as follows: 
fF(I

for a,  or  
 where z`? fv = 1, for fv > 0  The bifurcation takes place at point point (attractor) f =  0, for critical points (attractors) attractor) f =  0.  Such a bifurcation is called supercritical, since new qualitative solution occurs for a >  aÑ .  

  For a À 0 there exists only 1 unstable  critical point  a ≤ 0, there are 3 stable points a bifurcation is called subcritical. 
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bfFbI +  2afF = 2�, 
with the solutions formulated as follows: 

(I) =  
ÕÖ×
ÖØ afvF�fvF +  ( a −  �fvF)ÓF�¢fvF1 + 2�fvFI

Ù , 

f(I) =  ÚfF(I) z`?(fv), 
0, z`? fv = −1 fv � 0, z`? fv = 0 fv = 0.  

The bifurcation takes place at point a =  0. There exists one stable critical , for a ≤ 0. Whereas, when a > 0, there exist 2 stable tors) f =  ±Úa/� and nonstable critical point (negative bifurcation is called supercritical, since new qualitative  

Fig. 15 Supercritical bifurcation. 

exists only 1 unstable  critical point f =  0, whereas for , there are 3 stable points f =  0 and unstable f =  ±bifurcation is called subcritical.  
30 

 

(6.11) 

 
. There exists one stable critical , there exist 2 stable and nonstable critical point (negative bifurcation is called supercritical, since new qualitative 

 
, whereas for ±Úa/�. Such 
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 Bifurcations presented in bifurcations.  

  
6.2.2 Saddle   The another type of bifurcation is described by means of the following equation:  

The critical point of above equation are 
 While we are interested in real solutions only, we see, that for a > 0 we have 2 critical points, for a = 0, and there are none for a � 0. integrated using variable division.  

f(I) =  
ÕÖÖ
×
ÖÖØ
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Bifurcations presented in figures 15 and 16, are called pitch

Fig. 16 Subcritical bifurcation. 

Saddle-node bifurcation    
The another type of bifurcation is described by means of the following 

bfbI = a −  fF. 
The critical point of above equation are 

fE =  √a,         fF =  −√a.  
While we are interested in real solutions only, we see, that for a > 0 we have 2 critical points, for a = 0, and there are none for a � 0. Equation integrated using variable division. 

ÕÖÖ
×
ÖÖØ √a fv +  √a tanh(√aI)√a + fv tanh(√aI)               @yC a > 0fv1 +  fvI                                            @yC a = 0 √−a fv −  √−a tanh(√−aI)√−a + fv tanh(√−aI)      @yC a �  0 
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are called pitch-fork 

 

The another type of bifurcation is described by means of the following 

(6.16) 

While we are interested in real solutions only, we see, that for a > 0 we have 2 Equation (6.16) can be 

0
0
0

Ù     . 

(4.17) 
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In the above equation, as the initial condition course of the function of the solution of  lim¢ → ® f(I) =  lim¢ → ® f(I) =  lim¢ → ® f(I)  Moreover,  lim¢ → EuÜ f(I
 lim¢ → √� ¨ÝHÞ(√�uÜ ) f lim¢ → √� ¨ÝHÞ  The properties of the solution ( 

Fig. 17 Illustration of the pr  
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In the above equation, as the initial condition fv = f(0) is taken. Analysing the course of the function of the solution of f(I) we see, that: 
= √a          @yC a > 0    a?b   fv >  −√a, 

−√a          @yC a > 0    a?b   fv >  −√a, 
) = 0          @yC   a = 0    a?b   fv À 0, 

I) = −∞    @yC a = 0 a?b fv � 0,     
f(I) = −∞    @yC a > 0 a?b fv � −√a,       

lim¨ÝHÞ(√�uÜ ) f(I) = +∞    @yC a � 0.      

solution (6.16) are presented in figure below. 

Illustration of the properties of the equation (6.16). 
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is taken. Analysing the 
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This elaboration implies, that number of critical points is changing, when the value of parameter a passes zero. Moreover, stability of critical points is also changing, when f = ± √a  passes zero. This kind of bifurcation is called saddle-node bifurcation.   
6.2.3 Hopf bifurcation   The Hopf bifurcation lies in loss of the stability of the critical point, what implies appearance of periodic solution (limit cycle). The bifurcation can be discussed using the following set of differential equations:  bfbI =  −i + (a −  fF − iF)f,  bibI  =  f + (a −  fF − iF)i,  (6.18)  where a ∈ ℝ. Assuimng bf/bI =  bi/bI =  0, it can be seen, that f =  0 and i =  0 are the critical points. Linearising (6.18) in the neighbourhood of the critical point, one obtains: bfbI =  −i + af,   bibI =  f + ai. (6.19)  The solution of the above set of equation is combination of the linear functions:  f(I) =  Óß¢±,  i(I) =  Óß¢X, satisfying the equation:  ½ ± =  z ±,  where z is proper value, ± = [±, X]£, are the proper vectors, and ½ is 2 × 2 matrix:  
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½ =  àa −11 a á. Hence,  0 = det(½ − z) =  âa − z −11 a − zâ =   (a − z)F +  1,  yielding  z =  a ± p. (6.20)  The solution i =  f =  0 of the linearised system is stable, if �Ó}zE,F~ � 0, i. e. when a �  0 and unstable for a >  0.     The form of the set of equations (6.18) was chosen in such a manner, that they are able to be solved analytically. Introducing polar coordinates f = C xyz�, i =  C zp?� for C À 0 it can be easily shown, that f +  pi =  C ÓfK(i�). Multiplying the second equation from the set (6.18) by p and then adding  to the first one, one receives:  b(C Ó[ã)bI =  bfbI +  p bibI = −i + pf + (a − fF − iF),  or  
cbCbI +  pC b�bI j Ó[ã = pCÓ[ã +  (a − CF)CÓ[ã. (6.21)  Dividing both sides of the above equation by ÓfK(p�) and comparing real and imaginary parts on the both sides of the equation, we obtain:   bCbI = C(a −  CF),  b�bI = 1. (4.22)  Hence,  
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CF (I
 
and   
 The solution (6.23) canthe plane, introducing Cartesian coordinate system trajectories f(I) → 0  for  of phase trajectories in that case are presented below. 

  For a >  0 point f (0,new stable solution appears: 
 
 which is limit cycle. Such a solution is  
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(I) =  
ÕÖ×
ÖØ aCvFCvF +  (a − CvF)ÓF�¢         @yC a © 0

CvF1 + 2CvFI                             @yC a = 0Ù  , 

� = I + �,   Cv = C(0),   �v =  �(0). 
3) can be presented as the phase trajectory f =the plane, introducing Cartesian coordinate system f − i. For for  I →  ∞ and point f (0,0) is the attractor. The behaviour s in that case are presented below. 

Fig. 18 Phase trajectories of the solution (6.23). 

0) becomes the negative attractor and as the consequence new stable solution appears: 
f =  √a cos(I +  �v), 
i =  √a sin(I +  �v), 

. Such a solution is shown in figure 19. 
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Ù  

(6.23) 

=  ( f(I), i(I) ) on . For a ≤ 0, all phase is the attractor. The behaviour 

 
becomes the negative attractor and as the consequence 
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Fig.  All phase trajectories beginning at the arbitrary point of the phase space, other than f (0,0) tend to periodic trajectory, in our case described by the equation 
  The presented Hopf bifurcation is the supercritical bifurcation, i.e the stable limit cycle replaces stable critical point, when    As shown, in case of transcritical bifurcation or pitchreal proper value passes zero as parameter av), either increasing or decreasing. See figure below. 

Fig. 20 Left: Saddle 
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Fig. 19 Limit cycle for negative attractor. 

All phase trajectories beginning at the arbitrary point of the phase space, other tend to periodic trajectory, in our case described by the equation
fF + iF = a. 

The presented Hopf bifurcation is the supercritical bifurcation, i.e the stable replaces stable critical point, when a changes sign. 
se of transcritical bifurcation or pitch-fork bifurcation, the real proper value passes zero as parameter a passes critical value (for instance ), either increasing or decreasing. See figure below. 

Left: Saddle-node bifurcation; Right: Hopf bifurcation. 
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All phase trajectories beginning at the arbitrary point of the phase space, other tend to periodic trajectory, in our case described by the equation: 

The presented Hopf bifurcation is the supercritical bifurcation, i.e the stable 
fork bifurcation, the passes critical value (for instance 
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 As the consequence of this transition, one or two stable critical points emerge. On the contrary to these bifurcations, in case of Hopf bifurcations, the real part of the conjugated proper values and when passes critical value cycle.  

Fig. 21

 Hopf bifurcations are characteristi
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As the consequence of this transition, one or two stable critical points emerge. On the contrary to these bifurcations, in case of Hopf bifurcations, the real part of the conjugated proper values äE,F changes sign from negative to positive and when passes critical value av the stable critical point is replaced with the 

21 Replacement of stable critical point with the limit cycle. 

Hopf bifurcations are characteristic for number of nonlinear differential equations
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As the consequence of this transition, one or two stable critical points emerge. On the contrary to these bifurcations, in case of Hopf bifurcations, the real gn from negative to positive the stable critical point is replaced with the limit 

 
 

c for number of nonlinear differential equations.
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7. Model of  the double pendulum 
    While the topic of this thesis concerns the investigation and analysis of the motion of the double pendulum system using numerical methods only, all relevant physical phenomena have to be presented using language of mathematics. At first, the general case will be introduced, basing on which, the special case of the double pendulum system will be derived. The latter case is related to the model of investigation of this paper, including all necessary specification and requirements.    At the very beginning, there will be thorough study of the possible positions occupied by the system, followed by projecting those positions on coordinate system. Knowing that, velocities will be found. The next step is to define potential and kinetic energy of the system, as well as finding their proper derivatives, which will make it possible to formulate equations of motion, on the basis of Lagrangian mechanics.   
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7.1   The general     Let us consider a model of plane (2 dimensional), double pendulum, attached to the tie, as depicted weightless joints – 2 springs of characteristics  

 There are point masses initial length NvE and NvFmasses, considering NvEformulated as follows:  
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The general case 

us consider a model of plane (2 dimensional), double pendulum, attached to the tie, as depicted in figure 22. The system consists of 2 elastic and 2 springs of characteristics JE and JF.  

Fig. 22 General case of double pendulum. 

There are point masses WE and WF fastened to the ends of particular joints of 
vF, respectively. Since both springs are stretched by the point 
vE, NvF as the initial lengths, their total length 

Nå =  NvE +  (WE +  WF)`JE , 

Nåå =  NvF + WF`JE . 
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us consider a model of plane (2 dimensional), double pendulum, system consists of 2 elastic and 

 
fastened to the ends of particular joints of , respectively. Since both springs are stretched by the point lengths at rest can be 

 (7.1)  
(7.2)  
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While swinging,  since dynamic forces are applied, springs elongate further and their total lengths are NE and NF, respectively. Due to the viscous damping at the fastenings and in springs occur, viscous damping coefficients xE and xF for the fastenings and x¬ and xæ for the springs need to be introduced.   The whole system is subjected to the circular excitation ç, which can be decomposed to the horizontal and vertical components:  çu = ½ zp? �I, (7.3)  çè = ½ xyz �I, (7.4) and its derivatives are as follows:  ç�u = ½� xyz �I, (7.5)  ç�è = −½� zp? �I, (7.6)  ç�u = −½�F zp? �I, (7.7)  ç�è = −½�F xyz �I. (7.8)   Using the Lagrangian mechanics, the equations of motion will be derived. The generalised coordinates are OE , OF and NE , NF. Projecting the positions of the pendulum`s masses on the Cartesian coordinate system, shown in figure 22, we obtain:  CuE = NEsinOE − çu, (7.9)  CuF = NEzp?OE − çu + NFzp?OF, (7.10)  CèE = NEcosOE − çè, (7.11)  
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CèF = NExyzOE − çè + NFxyzOF. (7.12)  By integrating and summing (7.9) and (7.11), as well as (7.10) and (7.12), we obtain equations of velocities:  XE = (NE� F − 2NE� zp?OEçu� − 2NExyzOEOE� çu� + çu� F − 2NE� xyzOEçè� + NEFOE� F
+ 2NEzp?OEOE� çè +� çè� F)EF,  (7.13)  XF = (−2NExyzOEOE� çu� + 2NEzp?OEOE� çè� + 2NEOE� NFOF� cos(OE − OF) + NF� F+ 2NE� NF� cos(OE − OF) + 2NE� NFOF� sin(OE − OF) − 2OE� NF� sin(OE − OF)+ OF� FNFF − 2NE� zp?OEçu� − 2NE� xyzOEçè� + çu� F + çè� F + NE� F + NEFOE� F

− 2çu� NFxyzOFOF� + 2çè� NFzp?OFOF� − 2çu� NF� zp?OF − 2çè� NFxyzOF)EF,  (7.14)  According to definition 5, the total kinetic energy of the system is given by :  
V =  Z W[XD[F2 .\

[]E  
 Substituting  squares of (7.13) and (7.14) into (2.5), the total kinetic energy of the system is:  

V = 12 WE é NE� F − 2NE� zp?OEçu� − 2NExyzOEOE� çu� + çu� F − 2NE� xyzOEçè� − NEFOE� F
+ 2NEzp?OEOE� çè� + çè� F~
+ 12 WF é−2NExyzOEOE� çu� + 2NEzp?OEOE� çè� + 2NEOE� NFOF� cos(OE − OF)
+ NF� F + 2NE� NF� cos(OE − OF) + 2NE� NFOF� zp?(OE − OF)− 2NEOE� NF� zp?(OE − OF) + OF� FNFF − 2NE� zp?OEçu� − 2NE� xyzOEçè� + çu� F
+ çè� F + NE� F + NEFOE� F − 2çu� NFxyzOFOF� + 2çè� NFzp?OFOF� − 2çu� NF� zp?OF− 2çè� NF� xyzOF ~, 

(7.15)  whereas, potential energy (on the basis of definition 6), for the general case of double pendulum, takes the following form: 
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^ = WE`NE(1 − xyzOE) + WF`}NE(1 − xyzOE) + NF(1 − xyzOF)~ + 12 JE(NE − Nå)F

+ 12 JF(NF − Nåå)F.  (7.16)   In order to calculate equations of motion, function of dissipation have to be also taken into consideration. For general case, it takes the following form:  
� = 12 xEOEF� + 12 xF(OF� − OE� )F + 12 x¬NE� F + 12 xæNF� F.    (7.17)  Having calculated (7.15), (7.16) and (7.17) and substituting their adequate derivatives to Lagrange`s equations of the 2nd kind (see chapter 2; 2.14), we receive 4 equations of motion for the system given in fig. 22; 1 equation for each degree of freedom. They are as follows:   OE� (WE + WF)NEF + OF� WFNENF xyz(OE − OF) − N�FWFNEzp?(OE − OF)+ 2O� EN�ENE(WE + WF) + 2O� FN�FWFNE xyz(OE − OF)+  O� FFWFNENF sin(φE − OF) + (WE + WF)`NEzp?φE− çu�  (WE + WF)NE cos φE +  çè� (WE + WF)NE cos φE + xEφ� E+ xF(φ� E − O� F) = 0, (7.18)  φE� WFNENF cos(φE − OF) +φF� WFNFF+N�E WFNFsin(φE − OF)+φ� EN�EWFNF cos(φE− OF) −O� EFWFNENF sin(φE − OF) + O� FN�FWFNF + WF`NFzp?φF− çu�  WFNF cos φF + çè� WFNF sin φF + xF(φ� F − O� E) = 0, (7.19)  φF� WFNFsin(φE − OF) + N�E (WE + WF)+N�FWFcos(φE − OF)−O� EFNE(WE + WF)+ 2O� FN�FWFsin(φE − OF)   − O� FFWFNFcos(φE − OF)+JE(NE − Nå) +  x¬N�E+ (WE + WF)(1 − xyzφE)` − çu� (WE + WF)zp? φE+  çè� (WE + WF)xyz φE =  0, (7.20)  −φE� WFNEsin(φE − OF)+N�E WFcos(φE − OF)+N�FWF−2O� EN�EWFzp?(φE− OF)−O� EFWFNEcos(φE − OF)−O� FFWFNF   + xæN�F+JF(NF − Nåå)+  WF`(1 − xyzφF) − çu� WFzp? φF − çè� WFxyz φF = 0. 
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(7.21) The general matrix representation of equations of motion can be presented in the following form:  ��� + x�� + J� = @(I).           (7.22)  Rearranging equation (7.22), we obtain mass matrix � and rest matrix � in the following representation:  ��� = �,              (7.23) where: 
 �� = �E�, (7.24)  and     

�� =
êë
ëìO� EO� FNE�NF� íî

îï . 
               (7.25) 

  Putting equations (7.18), (7.19), (7.20) and (7.21) into (7.23), we obtain 4 dimensional system of equations of motion in matrix form, which is presented below: 
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0
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(7.26
)  
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7.2   The examined system     In previous subchapter there was considered a generalised case of double pendulum. In this section, the special case will be analysed and all necessary derivations will be presented and then whole system will be verified in association with general case, performing all required modifications in general case model.  Let us have a look on a model of plane (2 dimensional), double pendulum, attached to a tie, as depicted in figure 23. The system consists of 2 weightless joints – the first on is elastic – spring with characteristic JE, the second one is inelastic of fixed length.  

 
Fig. 23 Special case of double pendulum.  There are point masses WE and WF fastened to the ends of particular joints of initial length NvE and NvF, respectively. Since spring of the first joint is stretched by the point masses, the length at rest, taking NvE as the initial length, can be formulated as follows:  

Nå =  NvE +  (WE +  WF)`JE . 
 (7.29)  
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While swinging, the length of the spring is increased, since dynamic forces are applied, and its total length is NE. For convenience, let us denote length of the second joint as NF : NvF = NF. (7.30)   Due to the viscous damping at the fastenings and in spring occur, viscous damping coefficients xE and xF for fastenings and x¬ for spring need to be introduced.  In this particular case, the whole system is subjected to the following vertical excitation çè:  çè = ½ zp? �I, (7.31)  and its derivatives are as follows:  ç�è = ½� xyz �I, (7.32)  ç�è = −½�F zp? �I. (7.33)    Using the Lagrangian mechanics the equations of motion will be derived. The generalised coordinates are OE , OF and NE. Projecting the positions of the pendulum`s masses on the Cartesian coordinate system, shown in figure 23, we obtain:  CuE = NEsinOE, (7.34)  CuF = NEzp?OE + NFzp?OF, (7.35)  CèE = NEcosOE − çè, (7.36)  CèF = NExyzOE − çè + NFxyzOF. (7.37)  
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By integrating and summing (7.34) and (7.36), as well as (7.35) and (7.37), we obtain equations of velocities:  XE = (NE� F − 2NE� xyzOEçè� + NEFOE� F + 2NEzp?OEOE� çè +� çè� F)EF,  (7.38)  XF = ( 2NEzp?OEOE� çè� + 2NEOE� NFOF� cos(OE − OF) − 2NE� xyzOEçè� + çè� F + NEFOE� F + NE� F+ 2NFzp?OFOF� çè� + 2NE� NFOF� sin(OE − OF) + OF� FNFF )EF, (7.39)  According to the definition 5(see chapter 2),  the total kinetic energy of the system is given by (2.5). Substituting squares of (7.38) and (7.39) into (2.5), the total kinetic energy of the system is received:  
V = 12 WE éNE� F − 2NE� xyzOEçè� + NEFOE� F + 2NEzp?OEOE� çè +� çè� Fö

+ 12 WF é2NEzp?OEOE� çè� + 2NEOE� NFOF� cos(OE − OF) − 2NE� xyzOEçè�+ çè� F + NEFOE� F + NE� F + 2NFzp?OFOF� çè� + 2NE� NFOF� sin(OE − OF)+ OF� FNFF~, (7.40)  whereas, its potential energy (on the basis of definition 6), for the special case of double pendulum, takes the following form:  
^ = WE`NE(1 − xyzOE) + WF`}NE(1 − xyzOE) + NF(1 − xyzOF)~ + 12 JE(NE − Nå)F.   (7.41)  In order to calculate equations of motion, function of dissipation have to be also taken into consideration. For the special case, it takes the following form:  

� = 12 xEOEF� + 12 xF(OF� − OE� )F + 12 x¬NE� F.    (7.42)  Having calculated (7.40), (7.41) and (7.42) and substituting their adequate derivatives to Lagrange`s equations of the 2nd kind (see chapter 2, 2.14), we receive 3 equations of motion for the system given in fig. 23; 1 equation for each degree of freedom. They are as follows: 
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φE� (WE + WF)NEF +  φF� WFNENF cos(φE − OF) +  2O� EN�ENE(WE + WF)+ O� FFWFNENF sin(φE − OF) +  (WE + WF)}` + çè� ~zp?φENE  + xEφ� E+ xF(φ� E − O� F) = 0, (7.43)  φE�  WFNENF cos(φE − OF) +  φF� WFNFF +  N�EWFNFsin(φE − OF)  +  2φ� EN�EWFNF cos(φE − OF) −O� EFWFNENF sin(φE − OF)+  WFNFzp?φF}` + çè� ~ +  xF(φ� F − O� E) = 0, (7.44)  φF� WFNFsin(φE − OF) +  N�E(WE + WF)  − O� FFWFNFcos(φE − OF) − O� EFNE(WE + WF)−  (WE + WF) cos OE } çè� + `~ +  (WE + WF)` +  JE(NE − Nå) +  x¬N�E= 0.  (7.45)  Recalling the rearranged general matrix representation of the equations of motion:  ��� = �.           (7.23)   Putting equations (7.43), (7.44) and (7.45) into (7.23), we obtain 3 dimensional system of equations of motion in matrix form, presented below: 
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)  
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7.3   Comparison of the cases  
  While system presented in subchapter 7.2 is simplified version of the double pendulum from section 7.1, it is relatively simple to verify, whether the examined system is derived properly, basing on the general case. Since in the special case there are only 3 degrees of freedom, unlike 4 DOFs from the general case, then it is reduced to 3 equations of motion and as the consequence size of the mass matrix � is 3 × 3 and of rest matrix � is 3 × 1.     Comparing both cases we notice that matrix (7.46) is inscribed into (7.26) i.e. it occupies its top-left position and their particular elements correspond to each other. As for the generalised coordinates, in the special case there are only 3 of them due to fewer degrees of freedom, see (7.27) and (7.47). Furthermore, removing components with N�F and setting the parameters from the rest matrix � (7.28) like JF, xæ and horizontal component of excitation çu to zero we obtain the rest matrix � related to the special case (7.48).   The above elaboration proves, that system is derived correctly and properly. 
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8. Numerical  analysis     This chapter is devoted to the investigation and analysis of the behaviour of the double pendulum system, presented in chapter 7.2, which is the subject of this paper. The research utilises the specially written software for the mathematical computations concerning this task. Additionally graphical program was used in order to gather data and create diagrams.   
8.1   Research input data     There are a few steps necessary to understand the motion of the given system. The most reliable tool in analysis are bifurcation diagrams, which make it possible to verify how a negligible increment or decrement of a chosen parameter influence the dynamics of the whole system. Moreover, as the additional chaos detection instrument Poincaré maps were used. Finally, phase portraits and time diagrams were created.  The numerical investigation of the double pendulum with parametric, vertical excitation system, was performed for the following set of parameters:  WE  =  2 kg, WF  =  3 kg, J =  2500 N/m, NE  =  0.6 m, NF  =  0.6 m, 

xE  =  0.017 WE�` NE¬    Aû üýþ , 
xF  =  0.011 WF�` NF¬    Aû üýþ , 
x¬  =  0.02ÚJE(WE + WF)   Aûþ , 
½WKNpI±bÓ =  0.25 m. (set 8.1) 
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 and the set of the initial conditions:  OE =  0.5, OF = 0.2, NE = Nå, OE� = 0.0, OF� = 0.0, NE� = 0.0. (set 8.2)   The research is performed when system indicates stable behaviour – i.e proper vibrations of the system disappear and it is subjected to the forced vibrations only, that is a reason, why the specific number of periods is omitted and data collection is started at the particular step (there are 200 stabilising periods followed by 100 periods recorded). 
 

 

8.2   Analysis of the excitation frequency influence    At first, the influence of excitation frequency on the behaviour of the double pendulum system with parametric, vertical excitation is investigated.   
8.2.1 Bifurcation diagrams for excitation frequency 

  There are the bifurcation diagrams, for data given in set 8.1 and initial conditions in set 8.2, with excitation frequency taken as the bifurcation parameter, presented below. For convenience, the same variable for forward and backward direction of investigation were put on the same page.  
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Fig. 24 Forward bifurcation diagram for angle  �Í and excitation frequency  �.   

 
Fig. 25 Backward bifurcation diagram for angle  �Í and excitation frequency  �. 



Numerical Analysis 

54 

Dynamics of double pendulum with parametric vertical excitation 

 
Fig. 26 Forward bifurcation diagram for total spring length  �Í and excitation frequency  �.   

  
Fig. 27 Backward bifurcation diagram for total spring length  �Í and excitation frequency  �.  
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 The bifurcation diagrams were created in two directions of the parameter change. At first, simulation was started forwards, then, after reaching the limit, and applying the end conditions as the initial conditions, simulation was restarted backwards. It occurred, that solutions vary, indicating coexistence of attractors, what can be noticed in bifurcation diagrams, presented in figures 27 to 30. Generally, areas of the altered behaviour of the system differs significantly for forward and backward bifurcations.  The bifurcation diagrams presented in figure 27 concern change of declination angle OE with respect to the excitation frequency �  in range of (0.01 to 12) Hz. We observe periodic motion until � = 5.1 Hz, where saddle-node bifurcation occurs. Due to the loss of the stability of the system, motion changes into chaotic one. Such a situation is kept until � = 5.9 Hz, starting at that point, until � = 9.0 Hz, system is in a temporary section. Then, the attractor change proceeds and as the consequence, there is a rapid change of the behaviour of the system, which is now multiperiodic, until the end of the measuring range.  In case of diagrams 28 and 30, at the end of the phase of chaotic motion, we observe inversed period doubling for � = 5.5 Hz, followed by the multiperiodic motion.  An interesting phenomena occur for bifurcations presenting total spring length depending on excitation frequency. We observe, that after some critical value of �, spring begins to elongate rapidly, while subjected to the periodic motion. The possible explanation for that are rotations of the end pendulum. As the consequence of the action of positional force, spring`s length is increasing.  
8.2.2 Poincaré maps for excitation frequency   The Poincaré maps presented below, proves the assumption for chaotic motion for excitation frequency � = 5.5 ��, points are scattered and no pattern can be found. Whereas, study of case for � = 8.2 ��, reveals that motion for that value of excitation frequency is multiperiodic. Additionally, there are Poincaré maps for spring for every behaviour of the system, described above, i.e. for � = 1 ��, 7 ��, 10.5 ��. These diagrams reveal that motion for those values of excitation frequency are either periodic or multiperiodic.          
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Fig. 32 Poincaré map for excitation 

 frequency � =  Í�.� �	. 
 

 

 

 

Fig. 28 Poincaré map for excitation 

 frequency � =  Í �	. 
Fig. 29 Poincaré map for excitation 

 frequency � =  �.� �	. 

Fig. 30 Poincaré map for excitation 

 frequency � =  
 �	. 
Fig. 31 Poincaré map for excitation 

 frequency � =  �. « �	. 
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8.2.3 Phase portraits for excitation frequency   There are phase portraits for every investigated frequency resented below. While we are only interested in behaviour mapping, only phase portraits concerning spring are shown. All diagrams were created for the same time interval, when the system was stable.   One can see, that every diagram, except the one for excitation frequency � = 5.5 ��, show the periodic or multiperiodic motion. The distinguished case prove chaotic motion.   

    

       

Fig. 34 Phase portrait for excitation 

 frequency � =  �.� �	. 
Fig. 33 Phase portrait for excitation 

 frequency � =  Í �	. 

Fig. 35 Phase portrait for excitation 

 frequency � =  �. « �	. 
Fig. 36 Phase portrait for excitation 

 frequency � =  
 �	. 
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Fig. 37 Phase portrait for excitation 

 frequency � =  Í�.� �	. 
  

8.2.4 Time diagrams 

  The simplest way to visualize the motion of the body is to create diagrams showing dependency of a chosen parameter with respect to the time. There are the declination angles OE, OF and total spring length NEversus time diagrams. They were created for set 8.1 and set 8.2 with excitation frequency � = 5.5 ��. One can see, that there are no distinctive similarities or patterns in the whole analysed interval, and thus the system indicates chaotic behaviour.    

 
Fig. 38 Angle  �Í change vs time  for excitation frequency � = �.� �. 
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Fig. 39 Angle  �« change vs time for excitation frequency � = �.� �. 

 

 
Fig. 40 Total spring length  �Í change vs time for excitation frequency � = �.� �.    

8.3   Analysis of the stiffness coefficient influence 
   In this subchapter, the influence of the stiffness coefficient of the spring on the behaviour of the double pendulum system with parametric, vertical excitation is investigated. The assumed excitation frequency � is constant for all considered cases and equal to 8.5 ��. 

 

 

8.3.1 Bifurcation diagrams for stiffness coefficient 

  There are the bifurcation diagrams, for data given in set 8.1 and initial conditions in set 8.2, with stiffness coefficient taken as the bifurcation parameter, presented below. The excitation frequency � is set to 8.5 Hz.  
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Fig. 41 Forward bifurcation diagram for angle  �Í and stiffness coefficient  r. 

       
Fig. 42 Backward bifurcation diagram for angle  �Í and stiffness coefficient  r. 
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Fig. 43 Forward bifurcation diagram for total spring length  �Í and stiffness coefficient  r. 

  

 
Fig. 44 Backward bifurcation diagram for total spring length  �Í and stiffness coefficient  r. 
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 For the better insight into the systems behaviour, there is the magnification of the one of the most interesting areas for stiffness coefficient k ranging from 2130 to 2180.   

 
Fig. 45 Magnified backward bifurcation diagram for angle  �Í 

versus stiffness coefficient  r. 

  
Fig. 46 Magnified backward bifurcation diagram for total spring length �Í 

versus stiffness coefficient  r.    
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 The other zone of more accurate calculations is performed for the second window occurring on bifurcation diagrams, ranging from (2470 to 2710) �/W. For convenience and diagram clearance, only 3 top branches are shown.  

 
Fig. 47 Magnified forward bifurcation diagram for total spring length �Í 

versus stiffness coefficient  r. 

   The bifurcation diagrams presented in section 8.3.2 concern change of declination angle OE and total spring length NE with respect to the stiffness coefficient J  in range of (2000 to 3000) �/W. We observe irregular motion in almost whole investigated range. We may distinguish 2 windows with periodic motion, for J =  2130 to 2180 and similarly, for J =  2470 to 2710 for forward analysis, and for k = 2470 to 2550 for backward analysis. The closer investigation of the 1 window, suggests that we deal with the secondary Hopf bifurcation (Neimark bifurcation) in that range, i.e. transition from periodic to quasiperiodic motion is seen. Whereas, in the second window, the transition from chaotic motion to regular one takes place via sequences of period doubling bifurcation. Similarly, for stiffness coefficient around J =  2700 �/W, one may observe period doubling phenomena as the route to chaos.   The bifurcation diagrams were, again, created in two directions of the parameter change. At first, simulation was started forwards, then, after reaching 
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the limit, and applying the end conditions as the initial conditions, simulation was restarted backward. It occurred, that solutions slightly vary, what is especially visible in windows. indicating coexistence of attractors. Generally, forward and backward bifurcations are very similar, but for the backward direction, we observe that the switch of the solution occurs  later (starting from J =  3000, there is a longer period of probable chaotic motion, until J =  2550).  
8.3.2 Poincaré maps for stiffness coefficient   The Poincaré maps presented below, prove the assumption for chaotic motion in the mentioned areas, points are scattered and no pattern can be found. Whereas, for periodic motion, adequate diagrams also can be seen. Moreover, for the case J =  2135 �/W, quasiperiodic motion is revealed.   

     

    

Fig. 49 Poincaré map for stiffness  

coefficient k = 2135 N/m.    Fig. 48 Poincaré map for stiffness  

coefficient k = 2100 N/m.    

Fig. 51 Poincaré map for stiffness 

 coefficient k = 2300 N/m.    Fig. 50 Poincaré map for stiffness  

coefficient k = 2160 N/m.    
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8.3.3 Phase portraits for stiffness coefficient   The phase portraits for every investigated stiffness coefficient are presented below. There are only phase portraits concerning spring, while we are only interested in the behaviour mapping. All diagrams were created for the same time interval, when the system indicated stable behaviour. All possible solutions are again visible, chaotic motion, quasiperiodic and periodic ones.   

  
 

 

 

 

 

 

 

Fig. 52 Poincaré map for stiffness  

coefficient k = 2500 N/m. 

Fig. 53 Poincaré map for stiffness 

 coefficient k = 2900 N/m. 

Fig. 55 Phase portrait for stiffness 

 coefficient k = 2135 N/m.. 

Fig. 54 Phase portrait for stiffness 

 coefficient k = 2100 N/m.. 
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8.3.4 Time diagrams   The simplest way to visualize the motion of the body is to create diagrams showing dependency of a chosen parameter with respect to the time. There are the declination angles OE, OF and total spring length NEversus time diagrams. Diagrams were created for set 8.1 and set 8.2 with stiffness coefficient J = 2300 �/W. One can see, that there are no distinctive similarities or patterns in the whole analysed interval, and thus the system indicates chaotic behaviour.  

Fig. 56 Phase portrait for stiffness 

 coefficient k = 2160 N/m.. 

Fig. 57 Phase portrait for stiffness 

 coefficient k = 2300 N/m.. 

Fig. 58 Phase portrait for stiffness 

 coefficient k = 2500 N/m.. 

Fig. 59 Phase portrait for stiffness 

 coefficient k = 2900 N/m.. 
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Fig. 60 Angle �Í change vs time for excitation frequency � = �.� � and stiffness coefficient  r = «��� �/�. 

 

 
Fig. 61 Angle �« change vs time for excitation frequency � = �.� � and stiffness coefficient  r = «��� �/�.   

 
Fig. 62 Total spring length  �Í change vs time for excitation frequency � = �.� � and stiffness coefficient  r = «��� �/�.  
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9. Conclusions      The numerical analysis performed for the double pendulum parametrically excited allow us to draw number of conclusions. First of all, the characteristic behaviour indicates, that the investigated system shows greatly nonlinear dynamics. There exist intervals of control parameters, depending on which, either periodic (including multiperiodic) motion or chaotic motion of the system is observed. Additionally, quasiperiodic motion was found. Furthermore, as proved, in some cases there is a possibility of coexistence of attractors, having influence on the motion. During the research, rapid change of motion from periodic to chaotic was shown according to saddle-node bifurcation for excitation frequency. As in case of the stiffness coefficient, taken as the bifurcation parameter, route to chaos was obtained via period doubling and Hopf bifurcations.    To conclude, the performed investigation indicates sensitivity of the examined system to control parameters, resulting in sudden changes of the system`s behaviour. It means, that rapid alteration of the behaviour of the system might be noticed, as the response to its control parameters change.    In technical literature, chaotic system is frequently understood as the system, whose numerical simulations suggest existence of complex dynamics. However, it is hardly ever assumed, that complicated attractor is in reality, the periodic trajectory of extremely large period; or we deal with quasiperiodic motion.
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