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Chapter 1

Introduction

We live in a world of oscillations. Everything that surrounds us, from the

engines of our cars and computer processors by passing butterfly flapping its

wings, ending the contractions of our own hearts, have one thing in common

- generates rhythm. These are not isolated objects. On the contrary, they

co-exist in the environment and interact with each other, even in negligible

way. Often these interactions result in the adopting a common rhythm. How

many times have we seen vee formation of birds wavings their wings with the

same frequency?

This adjustment of rhythms due to interactions is intuitively the essence

of the phenomenon of synchronization, a phenomenon that will be the main

subject of this study. [5]

One of the first that examined the phenomenon of synchronization was

Christiaan Huygens. He watched the two pendulum clocks hung on the

common beam. As a result of the vibrations transmitted by this beam from

one clock to the other, after a while they started to move with the same

frequency. It is worth mentioning that also Rayleigh and van der Pol whom

had a significant contribution to the understanding and developing of this

theory. [6]

In this work will be considered a couple of multistable systems. System

multistability means that for fixed values of the parameters, it has many
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coexisting attractors. The described behavior is a natural characteristic of

dynamic systems and can be found in almost every field of natural sciences.

[1]

Coupling several of such systems in one common issue, by including in equa-

tions the relevant factors, we can observe a very interesting behaviors. Our

main priority is to observe the above-mentioned synchronization.

The subject of the studies is van der Pol-Duffing oscillator. The structure

is based on the equation of van der Pol oscillator, designed by the aforemen-

tioned physicist Balthasar van der Pol. Originally used in the studies of

electrical vacuum tubes was later used in many other areas of physical and

biological sciences, such as neuroscience or even seismology. [11]

Modification of the equation by adding an external driving force and non-

linear Duffing type stiffness leads to the equation known as the van der

Pol-Duffing oscillator equation.

At first basic mathematical definitions and theorems that are necessary

for further considerations will be introduced. They will be later expanded in

the next chapters. Then, the single van der Pol oscillator dynamics will be

examined and later the Duffing modification. In next chapter we will focus

on the behavior of the system of 10 coupled oscillators and changes of this

behavior under the influence of some actions. Finally, conclusions will be

presented, and other modifications that can be considered for this problem.
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Chapter 2

Preliminaries

At the beginning the basic concepts and theorems from theory of ordinary

differential equations and theory of dynamical systems will be introduced.

2.1 Theory of ordinary differential equations

Let us consider the first-order ordinary differential equation

y′ = g(t, y), y(t0) = y0, (2.1)

where g : R× Rn ⊃ U → Rn is a continuous function, U is an open set and

(t0, y0) ∈ U .

Definition 2.1.1 Problem (2.1) is called the initial value problem (the Cauchy

problem). [7]

Definition 2.1.2 Every function y∗ : I → Rn of class C1, where I ⊂ R such

that for all t ∈ I, (t, y∗(t)) ∈ U, (y∗)′(t) = g(t, y∗(t)) and y∗(t0) = y0 is called

the solution of problem (2.1). [7]

Definition 2.1.3 We say that the solution y∗∗ : I1 → Rn of (2.1) is an ex-

tension of the solution y∗ : I → Rn of this problem, if I ⊂ I1 and y
∗∗ |I = y∗ .

If I 6= I1, then this extension is called the proper one. The solution, for which

there is no proper extension is called a global solution. [7]
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Remark 2.1.1 Let y := (y1, y2, . . . , yn), g := (g1, g2, . . . , gn), y0 := (y10, y
2
0, . . . , y

n
0 ).

Clearly, the problem (2.1) can be represented as the system of n first-order

ordinary differential equations, each of the R space. We have

y′i = gi(t, y1, y2, . . . , yn), yi(t0) = yi0, i = 1, . . . , n. (2.2)

Definition 2.1.4 We say that the function g satisfies on set U ′ ⊂ U the

Lipschitz condition with respect to the variable y, if there exist a constant

L > 0 such that for any points (t, y1), (t, y2) ∈ U ′ the condition ‖g(t, y1) −
g(t, y2)‖ ≤ L‖y1 − y2‖ is satisfied, where ‖·‖ is the norm in space Rn. [7]

Definition 2.1.5 We will say that function g satisfies on set U the local

Lipschitz condition with respect to the variable y, if every point (t, y0) ∈ U

has a neighborhood in which g satisfies the Lipschitz condition with respect

to the variable y. [7]

Theorem 2.1.1 Function g satisfies on set U ′ ⊂ U the Lipschitz condition

with respect to the variable y if and only if each function g1, . . . , gn satisfies

on U ′ this condition with respect to y. [7]

Proof. Let (t, y1), (t, y2) ∈ U ′.

” ⇐ ”: Assume that there exist constant L > 0 such that ‖g(t, y1) −
g(t, y2)‖ ≤ L‖y1 − y2‖. Let for setted i ∈ {1, . . . , n}, Li := L. Using

the Euclidean norm in Rn and assumption we obtain

‖gi(t, y1)−gi(t, y2)‖ ≤
√

∑n

i=1 ‖gi(t, y1) − gi(t, y2)‖2 = ‖g(t, y1)−g(t, y2)‖ ≤
L‖y1 − y2‖ = Li‖y1 − y2‖.

From the arbitrary on i functions g1, . . . , gn satisfy on U ′ the Lipschitz con-

dition with respect to the variable y.

” ⇒ ”: Assume that for every i ∈ {1, . . . , n} there exist constant Li > 0 such

that 0 ≤ ‖gi(t, y1)− gi(t, y
2)‖ ≤ Li‖y1− y2‖. Let L :=

√

∑n

i=1 L
2
i . Using the

Euclidean norm and assumption we have

‖g(t, y1)−g(t, y2)‖ =
√

∑n

i=1 ‖gi(t, y1) − gi(t, y2)‖2 ≤
√

∑n

i=1 L
2
i ‖y1 − y2‖2 =

‖y1 − y2‖
√

∑n

i=1 L
2
i = L‖y1 − y2‖.

So g satisfies on U ′ the Lipschitz condition with respect to the variable y,

which had to be demonstrated. ✷
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Remark 2.1.2 Similarly, one can show that above theorem remains valid

also for the local Lipschitz condition.

Theorem 2.1.2 Let I1, . . . , In be a 1-dimensional intervals and let Ũ = R×
I1 × . . .× In. Assume that function g̃ : Ũ → Rn, where (t, y1, . . . , yn) ∈ Ũ is

differentiable for the variables y1, . . . , yn on set Ũ and its partial derivatives
∂g̃

∂yi
are bounded functions that satisfy

‖ ∂g̃

∂yi
(t, y1, . . . , yn)‖ ≤ Mi for every (t, y1, . . . , yn) ∈ Ũ , where i = 1, . . . , n.

Then, for any two points a = (t, a1, . . . , an), b = (t, b1, . . . , bn) ∈ Ũ we obtain

‖f(b) − f(a)‖ ≤
∑n

i=1Mi |bi − ai|. ([7], with proof)

Theorem 2.1.3 If every function gi, i = 1, . . . , n has on set U continuous

partial derivatives ∂gi
∂yj

, j = 1, . . . , n with respect to the point (t, y), then the

function g satisfies on set U the local Lipschitz condition with respect to the

variable y. [7]

Proof. We will consider in Rn the taxicab norm, that is, for any x =

(x1, . . . , xn) ∈ Rn, ‖x‖ =
∑n

i=1 |xi|.
Let i ∈ {1, . . . , n} , (t, y0) ∈ U . The set U is open, so there exist δ > 0 such

that the closed ball of radius δ centered at a point (t, y0) is contained in U ,

i.e. K̄((t, y0), δ) ⊂ U . Because we consider the taxicab metric, so this ball is

a Cartesian product of n+ 1 closed intervals from R. From the compactness

of the set K̄((t, y0), δ) and assumption about continuous partial derivatives
∂gi
∂yi
, j = 1, . . . , n we have

sup
{

‖ ∂gi
∂yi

(t̃, ỹ)‖ : (t̃, ỹ) ∈ K̄((t, y0), δ)
}

= Mj <∞, j = 1, . . . , n.

Let L := max {Mj : j ∈ {1, . . . , n}} and let us take any (t, y0,1) = (t, y0,11 , . . . , y0,1n ),

(t, y0,2) = (t, y0,21 , . . . , y0,2n ) ∈ K̄((t, y0), δ). From theorem (2.1.2) we have

‖gi(t, y0,1)−gi(t, y0,2)‖ ≤
∑n

j=1Mj

∣

∣y
0,1
j − y

0,2
j

∣

∣ ≤ L
∑n

j=1

∣

∣y
0,1
j − y

0,2
j

∣

∣ = L‖y0,1−
y0,2‖.

Therefore, gi satisfies on K̄((t, y0), δ) the local Lipschitz condition with re-

spect to the y, and more, on neighborhood K((t, y0), δ) ∋ (t, y0). From the

arbitrary on i ∈ {1, . . . , n} and theorem (2.1.1), function g also satisfies on
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K((t, y0), δ) this condition with respect to the y. From the arbitrary on

point (t, y0) ∈ U , g meets on U local Lipschitz condition with respect to the

y (definition (2.1.5)), which had to be demonstrated. ✷

The above theorem is easy to check sufficient condition for the function g to

be locally Lipschitz. This property of function is very important in funda-

mental theorem of existence and uniqueness of the solution of initial value

problem (2.1), which is shown below.

Theorem 2.1.4 If function g is continuous and satisfies on set U local Lip-

schitz condition with respect to the variable y, then for every (t0, y0) ∈ U

exists uniqueness global solution of (2.1). ([7], with proof)

Theorem 2.1.5 If the assumptions of the theorem (2.1.4) are fulfilled, then

the solution of (2.1) is continuous function of the initial condition y0. ([7],

with proof)

Since in the main part of the paper are considered second-order equations,

so it is necessary to present a method of bringing the high-order equations

into a system of first-order equations.

Let us consider the n-order ordinary differential equation:

z(n) = h(t, z, z′, . . . , z(n−1)), z(t0) = z00 , z
′(t0) = z10 , . . . , z

(n−1)(t0) = zn−1
0 ,

(2.3)

where h : R×Rn ⊃ V → R is a continuous function with continuous partial

derivatives with respect to the variables z, z′, . . . , z(n−1), V is an open set and

(t0, z
0
0 , . . . , z

n−1
0 ) ∈ V .

Remark 2.1.3 It should be noted that in the considered problem (2.3) the

solution z is a function that operates in space R, contrary to solution from

(2.1), which operates in Rn. The more general case can be considered with z

also operating in Rn, but such simplified formulation of the problem in this

paper is sufficient.
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Theorem 2.1.6 Problem (2.3) is equivalent to the problem:















































z′1(t) = z2(t), z1(t0) = z00

z′2(t) = z3(t), z2(t0) = z10
...

z′n−1(t) = zn(t), zn−1(t0) = zn−2
0

z′n(t) = h(t, z1, z2, . . . , zn), zn(t0) = zn−1
0

(2.4)

Proof. Let us put the following substitution. Let for every t from domain of

function z: z1(t) := z(t), z2(t) := z′(t), . . . , zn(t) := z(n−1)(t). Then we have

z′1(t) = z′(t) = z2(t)

z′2(t) = z′′(t) = z3(t)
...

z′n−1(t) = z(n−1)(t) = zn(t)

z′n(t) = zn(t) = h(t, z(t), z′(t), . . . , z(n−1)(t)) = h(t, z1(t), z2(t), . . . , zn(t))

Also:

z1(t0) = z(t0) = z00
...

zn(t0) = z(n−1)(t0) = zn−1
0

Hence we obtain the thesis. ✷

The theory derived for the (2.1) translates into problem (2.4). Substituting

y1 := z1, . . . , yn := zn, g1 := z2, . . . , gn−1 := zn, gn := h(t, z1, . . . , zn) and

y10 := z00 , . . . , y
n
0 := zn−1

0 it is easy to convert (2.4) to (2.1). Indeed,

y′ = (y′1, . . . , y
′
n) = (z′1, . . . , z

′
n) = (z2, . . . , zn−1, h(t, z1, z2, . . . , zn)) = (g1, . . . , gn) =

g(t, y).

y(t0) = (y1(t0), . . . , yn(t0)) = (z1(t0), . . . , zn(t0)) = (z00 , . . . , z
n−1
0 ) = (y10, . . . , y

n
0 ) =

y0.

What is more, assumptions made for function h are sufficient for g to satisfy

assumptions of theorem (2.1.4). Indeed, for every i ∈ {1, . . . , n− 1} , j ∈
{1, . . . , n}, ∂gi

∂zj
= 0 when j 6= i+ 1 and ∂gi

∂zj
= 1 when j = i+ 1, so these par-

tial derivatives are continuous as constant functions. Continuity ∂gn
∂zj

is the
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result of continuity of function h partial derivatives. According to theorem

(2.1.3), the assumptions of (2.1.4) ale fullfiled.

Definition 2.1.6 Let ϕ : [t0,∞) → Rn be a solution of problem (2.1). We

say that it is stable in the sense of Lyapunov, if for every ǫ > 0 exists δ >

0 such that every solution ψ of this system (for another initial value y0)

that satisfies |ψ(t0) − ϕ(t0)| < δ is determined over the interval [t0,∞) and

|ψ(t) − ϕ(t)| < ǫ for all t ≥ t0. [8]

Definition 2.1.7 We say that the solution ϕ : [t0,∞) → Rn of problem

(2.1) is asymptotically stable, if it is stable and there exist δ0 > 0 such that

for every solution ψ : [t0,∞) → Rn that satisfies |ψ(t0) − ϕ(t0)| < δ0 we

obtain limt→+∞ |ψ(t) − ϕ(t)| = 0. [8]

Definition 2.1.8 We say that solution ϕ is unstable, if it is not stable.

Remark 2.1.4 Using the substitution ỹ := y − ϕ, where ϕ is the solution

of problem (2.1), the stability of ϕ is equivalent to stability of zero-solution

ỹ ≡ θ of equation

ỹ′ = (y − ϕ)′ = y′ − ϕ′ = g(t, y) − g(t, ϕ) = g(t, ỹ + ϕ) − g(t, ϕ).

Function ỹ ≡ θ naturally meet the above equation.

2.2 Theory of dynamical systems

In the next part we will be considering the autonomous differential equations,

which are independent of the time variable t.

Let us consider therefore problem

y′ = g(y), y(t0) = y0, (2.5)

where g : Rn ⊃ U → Rn is function that satisfies assumptions of the theorem

of existence and uniqueness (2.1.4), U is open set and y0 ∈ U . We will further

assume that the solution of (2.5) is defined on the whole half-line [t0,∞). For

a fixed y0 ∈ U , we denote this solution as ϕy0.
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Definition 2.2.1 Dynamical system in Rn is called any family {St : t ≥ 0}
of maps from Rn to Rn such that

(i) S0 = idRn

(ii) St ◦ Sτ = St+τ , for every t, τ ≥ 0. [10]

Remark 2.2.1 In addition, we assume that the map [0,+∞)×Rn ∋ (t, y) 7→
St(y) is continuous.

Solutions of differential equations define some dynamical systems. Declares

that the following theorem.

Theorem 2.2.1 Let for y0 ∈ U , St−t0(y0) be the value of the solution ϕy0

in while t ≥ t0. Family {St−t0 : t− t0 ≥ 0} is a dynamical system in set

U ⊂ Rn.

Proof. The continuity of the map (t̃, y) 7→ St̃(y) follows from the continuity

of solution (2.5) with respect to variable t̃ and from theorem (2.1.5) about

continuous relationship of solution from the initial condition.

We check the definition (2.2.1) conditions.

(i) Let y0 ∈ U . Then S0(y0) = St0−t0(y0) = y(t0) = y0.

(ii) Let y0 ∈ U, t, τ ≥ 0. According to uniqueness of the solution of problem

(2.5) we obtain

(St ◦Sτ )(y0) = St(Sτ (y0)) = S(t+t0)−t0(S(τ+t0)−t0(y0)) = S(t+t0)−t0(y(τ+ t0)) =

y(τ + t0 + t+ t0) = y((τ + t+ t0) + t0) = S(τ+t+t0)−t0(y(t0)) = St+τ (y0). Hence

we obtain the thesis. ✷

Basing on the above, the whole theory of dynamical systems can be consid-

ered in relation to the autonomous differential equations. Below are intro-

duced the basic concepts and theorems of the theory.

Definition 2.2.2 Image of solution ϕy0, i.e. set {ϕy0(t) : t ≥ t0} is called

the trajectory of the system (2.5), starting from initial condition y0. [10]

Uniqueness of the solution indicates that the trajectories starting from dif-

ferent initial conditions can not intersect with each other.

There are several major types of trajectories.
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Definition 2.2.3 1◦ Trajectory is called the fixed point when ϕy0 is constant

function.

2◦ Trajectory is called the periodic trajectory when ϕy0 is periodic function.

3◦ Trajectory is called the quasi-periodic trajectory when ϕy0 is quasi-periodic

function. [10]

Definition 2.2.4 We say that the function u : R → R is quasi-periodic when

it is of the form u(t) = F (α1t, . . . , αnt) for some n ∈ N, where F : Rn → R is

function 2π-periodic with respect to each variable and numbers α1, . . . , αn are

independent over the field of rational numbers, i.e. they satisfy the condition
∑n

i=1 aiαi = 0, ai ∈ Q, i = 1, . . . , n ⇒ ai = 0, i = 1, . . . , n.

The fixed points are the trajectories, which are the simplest to find. We only

have to solve the equation g = θ with respect to the variable y. Finding

other types of trajectories is much more difficult.

Definition 2.2.5 Figure of the trajectories with selected direction of move-

ment on them is called a phase portrait of the system. [10]

Let us return to the concept of the stability of solutions for differential equa-

tions. Because in a fairly simple way we can find the trajectories that are

fixed points, so it would be important to have tools to investigate their sta-

bility. It turns out that such tools exist - these are the Lyapunov stability

theorems. They relate to the zero-solutions, but by virtue of remark (2.1.4)

test of stability of other fixed points can be reduced to test of zero-solution,

using the appropriate substitution. Let us assume, therefore, that the system

(2.5) has a zero-solution y ≡ θ, i.e. g(θ) = θ.

Theorem 2.2.2 If there exist function (called Lyapunov function) V : U →
[0,∞) of class C1 vanishing only in θ and such that function

V̇ (y) := 〈g(y), V ′(y)〉 ≤ 0 for every y ∈ U , where 〈·, ·〉 is scalar product in

Rn, then the zero-solution of problem (2.5) is stable. ([8], with proof)
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Theorem 2.2.3 If there exist function V : U → [0,∞) of class C1 vanishing

only in θ and such that function V̇ (y) := 〈g(y), V ′(y)〉 < 0 for every y ∈
U \{θ}, then the zero-solution of problem (2.5) is asymptotically stable. ([8],

with proof)

Theorem 2.2.4 If there exist function (called Lyapunov anti-function) V :

U → [0,∞) of class C1 vanishing only in θ and such that function V̇ (y) :=

〈g(y), V ′(y)〉 > 0 for every y ∈ U \ {θ} and there exist sequence (xn)n∈N

that is convergent to θ and such that for every n ∈ N, V (xn) > 0, then the

zero-solution of problem (2.5) is unstable. ([8], with proof)

At the end of this chapter two theorems that are used to study the existence

of periodic trajectories of differential equations on the plane are presented.

First, presented by Poincare and Bendixon, let us show the existence of such

trajectory for any equation on the plane, but its assumptions are usually

difficult to verify. The second - Lienard theorem, however, narrows the class

of equations, but it is very easy to handle.

Definition 2.2.6 Let y0 ∈ U be fixed. The ω-limit set for point y0 is called

set ω(y0) := {limn→+∞ ϕy0(tn) : tn → +∞ for n→ +∞}. [10]

Theorem 2.2.5 Let in the problem (2.5) n := 2 and let y0 ∈ U be fixed. If

set {ϕy0(t) : t ≥ t0} is a bounded set on the plane and its closure does not

contain fixed points, then ω(y0) is periodic trajectory. [10]

Theorem 2.2.6 Let us consider the second-order differential equation

z′′ + L1
′(z)z′ + L2(z) = 0, (2.6)

where L2 is continuous function and L1 is function of class C1 (equations

of this form are called the Lienard equations). Assume that (2.6) meets the

assumptions of theorem (2.1.4). If:

(i) L1, L2 are odd functions,

(ii) L2(z) > 0 for z > 0,
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(iii) L1(z) → +∞ for |z| → +∞ and there exist constant β1 > 0 such that

for z > β1 function L1 is positive and increases monotonically,

(iv) there exist constant β0 > 0 such that for z ∈ (0, β0), L1(z) < 0,

then equation (2.6) has periodic solution. In addition, if β0 = β1, then that

solution is unique and asymptotically stable. [9]

Proof of the Lienard theorem, using Poincare-Bendixon theorem (2.2.5), can

be found in [9].
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Chapter 3

Van der Pol - Duffing oscillator

In this chapter, we examine the dynamics of the two types of oscillators.

First, we consider the van der Pol oscillator and second, Duffing modification.

Examining the second one will provide a starting point for further studies.

3.1 Van der Pol oscillator

Let us consider the initial value problem

x′′ − α(1 − x2)x′ + x = 0, x(0) = y1, x
′(0) = y2, (3.1)

where x : [0,∞) → R, α ≥ 0, y1, y2 ∈ R.

Definition 3.1.1 System (3.1) is called the problem of van der Pol unforced

oscillator. x is a function of the position of oscillator in time and α is

parameter. [1]

Before analyzing the dynamics, let us transform the system (3.1) to a system

of two first-order equations. We will use both of them interchangeably.

Theorem 3.1.1 Problem (3.1) is equivalent to the problem






x′1 = x2, x1(0) = y1

x′2 = α(1 − x21)x2 − x1, x2(0) = y2,
(3.2)

where x1, x2 : [0,∞) → R, α ≥ 0, y1, y2 ∈ R

17



Proof. We will use the theorem (2.1.6). Rewriting the equation to the form

that is in the theorem we have x′′ = α(1 − x2)x′ − x. In this case n = 2 and

function h is the right side of this equation. From theorem (2.1.6) we obtain







x′1(t) = x2(t), x1(0) = y1

x′2(t) = α(1 − x1(t)
2)x2(t) − x1(t), x2(0) = y2

(3.3)

Hence we obtain the thesis. ✷

Remark 3.1.1 For further needs let us denote ḟ(x1, x2) := (x2, α(1−x21)x2−
x1).

Theorem 3.1.2 System (3.2) has exactly one global solution for any fixed

y1, y2 ∈ R.

Proof. Let U = [0,∞] × R2 and let f1, f2 : U → R, f : U → R2 be de-

noted as f1(t, x1, x2) := x2, f2(t, x1, x2) := α(1 − x21)x2 − x1, f(t, x1, x2) :=

(f1(t, x1, x2), f2(t, x1, x2)). Functions f1, f2, f are of course continuous on U

with respect to every variable as elementary functions. Furthermore
∂f1
∂x1

= 0, ∂f1
∂x2

= 1,
∂f2
∂x1

= −2αx1x2 − 1, ∂f2
∂x2

= α(1 − x21).

These partial derivatives treated as functions of the variable (t, x1, x2) on

set U are also continuous as elementary functions. Therefore from theorem

(2.1.3) f1, f2 satisfy on set U local Lipschitz condition with respect to variable

(x1, x2) and from theorem (2.1.1) and remark (2.1.2) the same concition on U

satisfies also function f . Hence, by theorem (2.1.4) system (3.2) has exactly

one global solution for any fixed y1, y2 ∈ R, which had to be demonstrated.

✷

Theorem 3.1.3 If α = 0, then the problem (3.1) has explicit form of solu-

tion, given by formula ϕ(t) = y1 cos t+ y2 sin t.

Proof. We present the solving method that uses the characteristic equation.

Description of the method, which allows to solve linear second-order differ-

ential equations can be found in [9].
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Equation in the present case is of the form x2+x = 0. Hence, the characteris-

tic equation is λ2+1 = 0. Its roots are λ1 = i, λ2 = −i and λ1, λ2 ∈ C. So the

solution of output problem is the function ϕ(t) = e0(C1y1 cos t+C2y2 sin t) =

C1y1 cos t + C2y2 sin t, where C1, C2 ∈ R. Using the initial conditions (3.1)

we have

y0 = ϕ(0) = C1 + 0 = C1

y1 = ϕ′(0) = − sin(0)C1 + cos(0)C2 = C2.

Therefore ϕ(t) = y1 cos t+ y2 sin t, which had to be demonstrated. ✷

Beneath is a chart of an exemplary solution of (3.1), where α = 0.

Figure 3.1.1 Solution of (3.1) for y1 = 1, y2 = 0.5.

In the following section, we assume that α > 0.

Theorem 3.1.4 System (3.2) has exactly one fixed point (x∗1, x
∗
2) = (0, 0).

Proof. Equating the right sides of equations from (3.2) to zero we obtain






x2 = 0

α(1 − x21)x2 − x1 = 0
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Therefore

x2 = 0 and (1 − x21)0 − x1 = 0 ⇒ x1 = 0.

Thus, the only fixed point is (x∗1, x
∗
2) = (0, 0). Hence we obtain the thesis. ✷

Theorem 3.1.5 Fixed point (x∗1, x
∗
2) = (0, 0) of system (3.2) is unstable for

x1 ∈ (−1, 1), x2 ∈ R.

Proof. According to theorem (2.2.4), letW := (−1, 1)×R. Then (x∗1, x
∗
2) ∈ U .

Let us consider the function V : W → R given by formula V (x1, x2) :=
1
2α
x21 + 1

2α
x22. We will show that V is the Lyapunov anti-function of system

(3.2). Indeed,

1) V is of class C1 and ∇V (x1, x2) = [ 1
α
x1,

1
α
x2].

2) V (x1, x2) = 0 ⇔ 1
2α
x21 + 1

2α
x22 = 0 ⇔ (x1, x2) = (0, 0).

3) V̇ (x1, x2) = (ḟ(x1, x2)|∇V (x1, x2)) = x2
1
α
x1 + (αx2 − αx21x2 − x1)

1
α
x2 =

1
α
x1x2 + x22 − x21x

2
2 − 1

α
x1x2 = x22(1 − x21) > 0, because (x1, x2) ∈ U .

4) Let us consider sequence xn := ( 1
n
, 1
n
) for n ∈ N. Then limn→∞ xn = (0, 0)

and V (xn) = 1
2α

( 1
n
)2 + 1

2α
( 1
n
)2 = 1

α
( 1
n
)2 > 0 for every n ∈ N.

Hence we obtain that system (3.2) has Lyapunov anti-function and by the-

orem (2.2.4) the zero-solution (x∗1, x
∗
2) = (0, 0) is unstable fixed point for

(x1, x2) ∈ U , which had to be demonstrated. ✷

Theorem 3.1.6 System (3.2) has asymptotically stable unique periodic so-

lution.

Proof. We will use theorem (2.2.6). Note, that equation from (3.2) is a

special case of the equation from this theorem. Indeed, here

L1
′(x) := −α(1 − x2), L2(x) := x, function L2 is of course continuous and

function L1(x) = −αx + 1
3
αx3 is of class C1. Note that,

(i′) L1(−x) = αx− 1
3
αx3 = −(−αx + 1

3
αx3) = −L1(x)

(i′′) L2(−x) = −x = −L2(x), so functions L1, L2 are odd.

(ii) Let x > 0. Then L2(x) = x > 0.

(iii) lim|x|→∞ L1(x) = lim|x|→∞ x3(− α
x2 + 1

3
α) = +∞. Furthermore, let β1 :=√

3 and x > β1. Hence L1(x) = −αx(1 −
√
3
3
x)(1 +

√
3
3
x) > 0 and L′

1(x) =
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−α(1−x)(1+x) > 0, so L1 is positive and strictly increasing for x ∈ (β1,∞).

(iv) Let β0 :=
√

3 and x ∈ (0, β0). Then L1(x) = −αx(1−
√
3
3
x)(1+

√
3
3
x) < 0.

What is more, β0 = β1.

Hence, from theorem (2.2.6), system (3.2) has unique periodic solution and

it is asymptotically stable, which had to be demonstrated. ✷

Beneath are the charts of a phase portrait of problem (3.2).

Figure 3.1.2 Phase portrait of (3.2), y1 = 1, y2 = 0.5, α = 0.2.
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Figure 3.1.3 Phase portrait of (3.2), y1 = 0.8, y2 = 1.3, α = 0.8.

The black curve is the trajectory and the blue one is the attractor, in this

case periodic solution. As we can see, the fixed point repels other trajectories

and the periodic trajectory attracts them.

The shape of the solution is highly dependent on the parameter value α.

For small values the solution is sinusoidal, but for bigger we can observe the

relaxation oscillations. It means that it tends to resemble a series of step

functions, jumping between positive and negative values twice per cycle.

Detailed study of this can be found in [11].

3.2 Van der Pol - Duffing oscillator

In this section, we examine the dynamics of a single van der Pol - Duffing

oscillator. The results will be very useful in studies about major issue, that

is in next chapter.
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Remark 3.2.1 In this and the following part the results are obtained by the

numerical calculations. The method that was used is fourth-order Runge-

Kutta method of numerical soluting the ordinary differential equations. De-

scription of the algorithm can be found in [9].

Let us consider the initial value problem

x′′ − α(1 − x2)x′ + x3 = F sin(ωt), x(0) = y1, x
′(0) = y2, (3.4)

where x : [0,∞) → R, α, F, ω > 0, y1, y2 ∈ R.

Definition 3.2.1 Problem (3.4) is called the problem of van der Pol - Duff-

ing oscillator. As before, x is a function of the position of oscillator in time

and α, F, ω are parameters. [1]

Theorem 3.2.1 Problem (3.4) is equivalent to the problem







x′1 = x2, x1(0) = y1

x′2 = α(1 − x21)x2 − x31 + F sin(ωt), x2(0) = y2,
(3.5)

where x1, x2 : [0,∞) → R, α, F, ω > 0, y1, y2 ∈ R

Proof. Again we use theorem (2.1.6). Rewriting the equation to the form

that is in the theorem we obtain x′′ = α(1 − x2)x′ − x3 + F sin(ωt). In this

case n = 2 and function h is the right side of this equation. From theorem

(2.1.6) we have







x′1(t) = x2(t), x1(0) = y1

x′2(t) = α(1 − x1(t)
2)x2(t) − x1(t)

3 + F sin(ωt), x2(0) = y2

(3.6)

Hence we obtain the thesis. ✷

Theorem 3.2.2 System (3.5) has exactly one global solution for any fixed

y1, y2 ∈ R.
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Proof. Let U = [0,∞]×R2 and let f1, f2 : U → R, f : U → R2 be denoted as

f1(t, x1, x2) := x2, f2(t, x1, x2) := α(1−x21)x2−x31 +F sin(ωt), f(t, x1, x2) :=

(f1(t, x1, x2), f2(t, x1, x2)). Functions f1, f2, f are of course continuous on U

with respect to every variable as elementary functions. Furthermore
∂f1
∂x1

= 0, ∂f1
∂x2

= 1
∂f2
∂x1

= −2αx1x2 − 3x21,
∂f2
∂x2

= α(1 − x21)

These partial derivatives treated as functions of the variable (t, x1, x2) on

set U are also continuous as elementary functions. Therefore from theorem

(2.1.3) f1, f2 satisfy on set U local Lipschitz condition with respect to variable

(x1, x2) and from theorem (2.1.1) and remark (2.1.2) the same condition on U

satisfies also function f . Hence, by theorem (2.1.4) system (3.2) has exactly

one global solution for any fixed y1, y2 ∈ R, which had to be demonstrated.

✷

Remark 3.2.2 It should be noted that the equation from (3.4) is not an au-

tonomous equation, i.e. it depends on time variable t.

Conversion (3.4) to the system of autonomous equation is related to addi-

tional function x0(t) := t and third equation in system - x′0 = 1. According

to the theory of dynamical systems, formally we should use this new form of

the system. But this operation, however, does not bring any new information,

and further complicates the problem, increasing the dimension of the system

from 2. to 3. That is why it will not be changed. But keep in mind that the

trajectories drawn on the plane (x, x′) are projections of the trajectories from

R3.

Remark 3.2.3 In the following sections it is assumed that α = 0.2, F =

1, ω = 0.962.

We will introduce some of the more advanced definitions of the theory of

dynamical systems, which have not been needed so far. We also present

their applications in considered problem.

Modify the system (2.5). Let us consider the dynamical system given by
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initial value problem

y′ = g(y, γ), y(0) = y0 (3.7)

where g : Rn ⊃ U × Γ ⊂ R → Rn, y0 ∈ U and γ ∈ Γ is parameter. As-

sume that g satisfies assumptions of theorem (2.1.4) and for every y0 ∈ U

it has a solution ϕy0 defined on the whole half-line [0,∞). Denote ϕy0 :=

(ϕ1
y0
, . . . ϕn

y0
).

Definition 3.2.2 Set A ⊂ Rn is called positively invariant set of the system

(3.7) if for every y0 ∈ A and t ≥ 0, ϕy0(t) ∈ A. [10]

Definition 3.2.3 Compact set A ⊂ Rn is called local attractor of system

(3.7) if it satisfies the following conditions

1◦ A is positively invariant;

2◦ There exist its neighbourhood A∗ ⊂ Rn such that

lim
t→∞

(sup {d(ϕy0(t), A) : y0 ∈ A∗}) = 0, (3.8)

where d(w,Z) := inf {d(w, z) : z ∈ Z} is the distance between the point w

and the set Z, given by metric Rn;

3◦ For any set A′ ⊂ A, if A′ satisfies the conditions 1◦ and 2◦, then A′ = A.

[10]

Definition 3.2.4 If in the above definition, the condition (3.8) is safistied

for every set A∗ ⊂ Rn, then set A is called the global attractor. [10]

Definition 3.2.5 We say that a dynamical system is multistable, if there

exist more than one local attractor. [1]

In multistable systems very important is the initial condition, from which the

trajectory starts. Depending on this value, the trajectory is attracted by a

certain attractor. Closely related to this is the concept of basin of attraction

of that attractor.

Definition 3.2.6 Basin of attraction of the attractor A of system (3.7) is

called set B(A) := {y0 ∈ U : ω(y0) ⊂ A}, where ω(y0) is ω-limit set for point

y0. [3]
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Remark 3.2.4 By saying that the system (3.7) is on the attractor A we

mean, that y0 ∈ B(A).

Examples of the basins of attraction for considered problem are shown be-

neath. On horizontal axis are values for y1 and on vertical axis are values for

y2.

Figure 3.2.1 Basins of attraction for (3.5), y1 ∈ [−2, 2], y2 ∈ [−2, 3].

The different colors represents the basins of attraction for different attractors.

We can see that some basins are more extensive than others, which makes
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the probabilities of hitting a different attractors by selecting random initial

values are different. Some basins can be very small, which shows the zoom

of the above figure.

Figure 3.2.2 Basins of attraction for (3.5), x1 ∈ [0.48, 0.764],

x2 ∈ [0.44, 0.765].

By bounding the interval of initial values we find an entirely new attractors,

as shown in the attached figure.

Theorem 3.2.3 Let Γ′ ⊂ Γ be a set of parameters such that for γ ∈ Γ′

there exist attractor A of system (3.7). Let B(A) be a basin of attraction of
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that attractor. Assuming that initial value y0 and parameter γ are chosen

independently, the probability that the system is on the attractor A is equal

to

p(A) := λ(Γ′)
λ(Γ)

λ(B(A))
λ(U)

,

where λ is measure on Rn. [1]

Definition 3.2.7 Attractor A is called rare attractor, if p(A) << 1. [1]

Remark 3.2.5 The choise of sets Γ and U is very important. By manipu-

lating these sets, the rare or non-rare property of attractor can be changed.

Example 3.2.1 Referring to the basins of attraction from the last figures.

Considering the initial values for (3.2.1) shows, that the basin (4) is so small

that the corresponding attractor is surely rare. The more, attractors for basins

(5) and (6) on the figure (3.2.2), which on (3.2.1) can not be seen. But if we

consider the conditions for (3.2.2), then the attractors for (4), (5) and (6)

might not be rare, because the volumes of these basins are bigger.

More information about the basins of attraction for this problem, but for

different parameter values ω can be found in [1].

If we know what are the shapes of the basins of attraction for some attrac-

tors, we can choose initial values such that trajectories starting from them

are attracted by different attractors.

Let {ϕ(t) : t ≥ 0} be a trajectory of system (3.5), where y1, y2 ∈ B(A)

are fixed and let t0 > 0 be fixed number. For sufficiently large t0, set

{ϕ(t) : t ≥ t0} is an approximate picture of the attractor A.

Remark 3.2.6 Presented graphs are approximate shapes of attractors, pro-

jected on the plane (x1, x2) (i.e. (x, x′)).
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Figure 3.2.3 Attractor (3.5), conditions x1 = −1.3093855, x2 = 1.208122.

Figure 3.2.4 Solution (3.5), conditions x1 = −1.3093855, x2 = 1.208122.
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Figure 3.2.5 Attractor (3.5), conditions x1 = 0.8595725, x2 = 1.2792925.

Figure 3.2.6 Solution (3.5), conditions x1 = 0.8595725, x2 = 1.2792925.

30



Figure 3.2.7 Fragment of attractor (3.5), x1 = 0.14585, x2 = 1.812765.

Figure 3.2.8 Solution (3.5), conditions x1 = 0.14585, x2 = 1.812765.

31



As shown above, some of the curves are closed. This suggests that the at-

tractor is a periodic trajectory. Basing only on the graphs of the trajectories

is difficult to determine the exact value of the period. Very helpful in solving

this problem is the idea of Poincare map.

Definition 3.2.8 Let n = 2, T ∈ R+, t
′

> 0. For system (3.7), the Poincare

map with base period T is called set

P :=
{

(ϕ1
y0

(kT ), ϕ2
y0

(kT )) ∈ R2 : k ∈ N, kT ≥ t
′
}

.

t
′

is the time after which we begin to put points on the map. [6]

Remark 3.2.7 Poincare maps allow to observe periodic solutions easily and

by this to determine the nature of the attractors. m points on the map (sepa-

rated by some neighborhoods) suggests a mT -periodic solution. Closed curve

suggests a quasiperiodic solution.

Beneath are the charts of exemplary Poincare maps for system (3.5). The

base period is T = 2π
ω

≈ 6.531.

Figure 3.2.9 Poincare map of (3.5), x1 = −1.3093855, x2 = 1.208122.
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Figure 3.2.10 Poincare map of (3.5), x1 = 0.8595725, x2 = 1.2792925.

Figure 3.2.11 Poincare map of (3.5), x1 = 0.14585, x2 = 1.812765.

33



Map (3.2.9) suggests 9T -periodic trajectory, map (3.2.10) 35T -periodic and

last (3.2.11) quasi-periodic.
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Chapter 4

Coupled van der Pol - Duffing

oscillators

We already know the dynamics of the single van der Pol - Duffing oscillator.

This chapter contains the main issues of this work, the study of the behavior

of coupled oscillators.

4.1 Coupled van der Pol - Duffing oscillators

Let there be 10 single van der Pol - Duffing systems







x′i,1 = xi,2, xi,1(0) = yi,1

x′i,2 = 0.2(1 − x2i,1)xi,2 − x3i,1 + sin(0.962t), xi,2(0) = yi,2,
(4.1)

where i = 1, . . . , 10, xi,1, xi,2 : [0,∞) → R, yi,1, yi,2 ∈ R.

Definition 4.1.1 The system of coupled van der Pol - Duffing oscillators
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(4.1) is called the system































x′1,1 = x1,2, x1,1(0) = y1,1

x′1,2 = 0.2(1 − x21,1)x1,2 − x31,1 + sin(0.962t) + ε(x1,1 − x10,1), x1,2(0) = y1,2

x′i,1 = xi,2, xi,1(0) = yi,1

x′i,2 = 0.2(1 − x2i,1)xi,2 − x3i,1 + sin(0.962t) + ε(xi,1 − xi−1,1), xi,2(0) = yi,2,

(4.2)

where i = 2, . . . , 10, x1,1, x1,2, xi,1, xi,2 : [0,∞) → R, y1,1, y1,2, yi,1, yi,2 ∈ R,

ε ≥ 0 is the coupling parameter and t ∈ [0, t̃] for some t̃ > 0 (we consider the

problem at some finite time horizon). For j ∈ {1, . . . , 10}, xj,1 is a function

of the position of j oscillator and xj,2 is a function of its speed. In addition,

we say that the pairs of oscillators 1 and 10 and (j+1) and j for j = 1, . . . , 9

are coupled.

The method of the coupling of systems comes from [3], where this issue has

been discussed for the general case.

Remark 4.1.1 We assumed the value t̃ = 5000.

Remark 4.1.2 If ε = 0, equations of the oscillators are independent and the

problem (4.2) obviously comes to (4.1).

From (4.2) (for ε > 0) we can see that the dynamics of each oscillator affects

and depends on the dynamics of others. This allows us to observe very rich

dynamics of the entire system.

The basic step is to determine the initial values. Let:

y1,1 := −1.3093855, y1,2 := 1.208122, y2,1 := 0.774456, y2,2 := 2.2131965,

y3,1 := −0.5153313, y3,2 := 0.2199307, y4,1 := 0.8595725, y4,2 := 1.2792925,

y5,1 := 0.760535, y5,2 := 0.54321, y6,1 := −0.34133, y6,2 := 1.71832,

y7,1 := −0.8415, y7,2 := 1.508125, y8,1 := −0.528235, y8,2 := 1.98004,

y9,1 := 0.600255, y9,2 := 0.7488, y10,1 := 0.14585, y10,2 := 1.812765.

Locations of the oscillators on the attractors are as follows:

1. on 9 2π
0.962

-periodic
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2. on 9 2π
0.962

-periodic (different from attractor for 1. oscillator)

3. on 25 2π
0.962

-periodic

4. on 35 2π
0.962

-periodic

5. on 49 2π
0.962

-periodic

6. on 49 2π
0.962

-periodic (different from attractor for 5. oscillator)

7. on 63 2π
0.962

-periodic

8. on 70 2π
0.962

-periodic

9. on 70 2π
0.962

-periodic (different from attractor for 8. oscillator)

10. on quasi-periodic.

The main problem is to explore, depending on what value of the parameter

ε oscillators synchronize. Let us introduce a couple of important definitions

that have not been used so far.

There are many types of synchronization. In this paper, we focus on the

concept of the lag synchronization. The following definitions are directly

relevant to the considered system (4.2), but can be easily generalized to the

case of any dynamical system.

Definition 4.1.2 We say that the oscillators j1, j2 ∈ {1, . . . , 10}, j1 6= j2

are in anti-phase lag synchronization, if there exists τ ∈ R (called lag), δ ≤
0.01xAj2,1 and ts ∈ [0, t̃] such that for every t ≥ ts occurs

|xj2,1(t) − (−xj1,1(t+ τ))| ≤ δ, where xAj2,1 := max {|xj2,1(t)| : t ≥ ts}. [2]

Is studies we assumed the value ts = t̃
2

= 2500.

Remark 4.1.3 The above definition assumes that the demanded accuracy

can not be in excess of 1% of the maximum value of the position of the oscil-

lator j2, but this is not the rule. Depending on your expectations, satisfying

may be weaker or stronger assumption for δ.

Remark 4.1.4 We briefly say that the oscillators are synchronized if they

are in anti-phase lag synchronization.
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τ does not have to be defined uniquely. By changing its value, we can get

smaller or larger values of δ, that still satisfies the definition (4.1.2). If the

priority is the smalest value for τ , it is enough to find the smallest τ for

which δ satisfies (4.1.2). If, however, more important is the accuracy, we

should consider a couple values of τ and from received values of δ satisfying

(4.1.2) select the minimum. In this thesis, we choosed the second criterion.

Next is introduced a helpful function to manage with this problem. The idea

of it was taken from [2].

Assume that oscillators j1, j2 are synchronized. Let us consider function

∆ : R → [0,∞) given by

∆(τ) := max {|xj2,1(t) − (−xj1,1(t + τ))| : t ≥ ts}
Finding the local minima of this function it can be tested for which values

of τ , δ will be the smallest. Without loss of generality we consider here the

values τ ≥ 0.

Definition 4.1.3 We say that the system (4.2) is synchronized, if any two

coupled oscillators are synchronized.

Remark 4.1.5 If synchronization occurs for some ε∗, then it occurs also for

every ε ≥ ε∗.

At the beginning the bifurcation diagrams will be presented. Concept of the

bifurcation means a sudden, qualitative change in the dynamics of system

that occurs when a value of the parameter is changed. [10]

There are many different types of bifurcations that changes the dynamics.

Change of the parameter can lead to a period doubling of solutions, changes of

its stability or even the existence of new attractors. Here, the most important

is the moment of synchronization.

We present a few examples of bifurcation diagrams for the problem (4.2),

where ε is the bifurcation parameter. We are trying to see how changes the

period of solution for individual oscillators.

Determine ε, j ∈ {1, . . . , 10} and m ∈ N. Denote
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Bε,j :=
{

(ε, xj,1((k +m) 2π
0.962

)) ∈ R2 : k ∈ N ∪ {0} ∧ (k +m) 2π
0.962

< t̃
}

.

The bifurcation diagram for j oscillator is the set Bifj :=
⋃ {Bε,j : ε ≥ 0}.

Points are placed from time value m 2π
0.962

. Due to the numerical limitations

should be kept in mind that the presented set Bifj is finite. We consider

only a finite number of values for ε, i.e. ε ∈ {ε0, . . . , εn} for some determined

n ∈ N and εl − εl−1 = const, l = 1, . . . , n.

Remark 4.1.6 Important is to emphasize that with the increase of ε, next

considered problem starts from the end points of the trajectory of the previous

one. Formally, let for denoted εl, l ∈ {1, . . . , n} system (4.2) with parameter

value ε = εl starts from initial values yj,1, yj,2, j = 1, . . . , 10. Denote yεlj,1 :=

xj,1(t̃), y
εl
j,2 := xj,2(t̃). Then for new system (4.2) with parameter value ε =

εl+1 we consider new initial values yj,1 := yεlj,1, yj,2 := yεlj,1, j = 1, . . . , 10. This

remark applies not only to bifurcation diagrams, but also to other dynamics

presentations (for example Poincare maps), which will be presented later in

the chapter.

Figure 4.1.1 Bifurcation diagram of 1. oscillator, ε ∈ [0, 0.003].
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Figure 4.1.2 Bifurcation diagram of 4. oscillator, ε ∈ [0, 0.003].

Figure 4.1.3 Bifurcation diagram of 10. oscillator, ε ∈ [0, 0.003].
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Figure 4.1.4 Bifurcation diagram of 1. oscillator, ε ∈ [0, 0.01].

As we can see, very small change in the value of the parameter ε greatly

disturbs the dynamics of the system. What is more, quite fast (ε ≈ 0.003)

dynamics of the oscillators begins to suggest chaos or quasiperiodicity (even-

tually very large period). This can be seen as filling points on the graph

above the value of ε parameter, as shown on the figure (4.1.4). This shape

of bifurcation diagrams maintaines also for higher values of ε, until the os-

cillators begin to oscillate periodically, which will be discussed further.

It is worth to mention at this point about the bifurcation diagrams for a

single van der Pol - Duffing oscillator, where as the parameter is taken α, F

or ω. Very interesting is the case for parameter ω, where depending on its

values, appears some completely new attractors, including chaotic. Detailed

study of this can be found in [1].

In solving considered problem more helpful are Poincare maps. For a fixed

value of ε, their construction is as in the definition (3.2.8) from the previous
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chapter (the map is created for each oscillator individually).

Figure 4.1.5 Poincare map of 1. oscillator, ε = 0.1.

For ε = 0.1 map suggests chaos, there is no synchronization.
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Figure 4.1.6 Poincare map of 1. oscillator, ε = 0.4.

Figure 4.1.7 Poincare maps for 1., 4. and 10. oscillators, ε = 0.4.
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For ε = 0.4 the maps overlap, so oscillators are on the same quasiperiodic

attractor. This occurs not only for oscillators 1., 4. and 10., but also for

others.

Beneath the approximate shape of the common attractor (this is, of course,

projection on the plane).

Figure 4.1.8 Common attractor of 1., 4. and 10. oscillator, ε = 0.4.

Next are presented the graph of ∆ function, synchronization graphs (i.e. the

graphs of position of one oscillator to the other) and the position in the time

charts. This will illustrate the phenomenon of anti-phase lag synchronization.

44



Figure 4.1.9 Function ∆, j1 = 3, j2 = 4,, ε = 0.4

Figure 4.1.10 Positions of oscillators 3. and 4. in time, ε = 0.4.
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Figure 4.1.11 Position of 3. oscillator versus position of 4. oscillator in

time, ε = 0.4.

From figure (4.1.10) it is hard to conclude that the oscillators are synchro-

nized, but that suggests (4.1.11).

In addition, the figure (4.1.9) also confirms it. The local minimas of function

∆ on interval (0, 10) are in τ1 = 0.61, τ2 = 3.665, τ3 = 6.715, τ4 = 9.77

for which we have respectively ∆(τ1) = 0.4454,∆(τ2) = 0.094,∆(τ3) =

0.4638,∆(τ4) = 0.0145. Putting the smallest obtained value δ := ∆(τ4) =

0.0145 the definition (4.1.2) is satisfied, because this value is approximately

0.52%xA4,1. So it can be concluded that oscillators are synchronized. It is

possible, however, that for τ > 10 is even better accuracy.

Results obtained above remain valid also for the rest of the pairs of coupled

oscillators.

Beneath are charts after reducing the lag. For oscillator 3. we put time vari-

able t + 9.77 and take its position with the opposite sign, and the oscillator

4. remains unchanged.
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Figure 4.1.12 Positions of oscillators 3. and 4., ε = 0.4.

Figure 4.1.13 Position of 3. versus position of 4. oscillator, ε = 0.4.
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Basing on the above, the answer to the main question of this paper is posi-

tive. There exist the value of the parameter ε such that the system (4.2) is

synchronized. In the following, we have been searching for the lowest such

value.

4.2 Moment of synchronization

We look for the smallest value of the parameter ε such for system (4.2) is

synchronized. The concept of the phase of oscillator will be very useful here.

Definition 4.2.1 The phase of the oscillator j ∈ {1, . . . , 10} is called func-

tion φj : [0, t̃] → [−π
2
, π
2
] given by φj(t) := arctan(

xj,2(t)

xj,1(t)
). Where xj,1(t) = 0

is assumed φj(t) = π
2
or φj(t) = −π

2
, depending on the sign of xj,2(t). The

case xj,1(t) = xj,2(t) = 0 is omitted, because it will not appear in this consid-

erations. [2]

For set t, above function defines the angle on the plane between the half-

line [0,∞) and the segment which begins in point (0, 0) and ends in point

(xj,1(t), xj,2(t)).

If two oscillators are moving in phase space on the same path, or one of them

on the path symmetrical across the point (0, 0) to the path of the second (i.e.

they are on the same attractor or on attractors symmetrical across the point

(0, 0)), then the mean values of their phases φ̃j are equal. This fact is very

helpful, because when examining this mean values for a denoted value of ε it

can be easily determined if it is the possible moment of the synchronization.

But the resulted value of ε does not have to mean it, because this fact is only

a necessary but not sufficient condition.

On beneath figures are the values of φ̃j. For every oscillator it is marked

with individual colour.
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Figure 4.2.1 Mean phase φ̃j versus ε, ε ∈ [0, 1].

Figure 4.2.2 Mean phase φ̃j versus ε, ε ∈ [0.3145, 0.31468].

From (4.2.2) we can see that from some value of ε the points overlap. This

moment may just mean synchronization. Indeed, putting ε = 0.31452:
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Figure 4.2.3 Poincare maps for 1., 4. and 10. oscillators, ε = 0.31452.

Figure 4.2.4 Common attractor of 1., 4. and 10. oscillator, ε = 0.31452.
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Hence, the smallest value of ε such that system (4.2) is synchronized is ε∗ ≈
0.314605. Moreover, on interval τ ∈ [0, 100] the best accuracy for each

coupled pair of oscillators was obtained for τ = 22.84. Then δ = 0.0102 and

its 0.38%xAj,1 for every j.

Increasing the value of ε more and more can be observed an interesting

behavior of the system. It is presented on following figure.

Figure 4.2.5 Mean phase φ̃1 versus ε, ε ∈ [0, 80].

As on the figure (4.2.5), function has some points of discontinuity (we con-

sider ε from the moment of synchronization). By studying the dynamics in

these points we get the following.
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Figure 4.2.6 Mean phase φ̃1 versus ε, ε ∈ [13.0074, 13.0076].

Figure 4.2.7 Poincare maps for 1., 4. and 10. oscillators, ε ≈ 13.0074.
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Figure 4.2.8 Attractors of 1., 4. and 10. oscillator, ε ≈ 13.0074.

Figure 4.2.9 Poincare maps for 1., 4. and 10. oscillators, ε ≈ 13.00744.
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Figure 4.2.10 Attractors of 1., 4. and 10. oscillator, ε ≈ 13.00744.

In this case, there appear two attractors, symmetrical across the point (0, 0)

on plane. Oscillators odd-numbered are on one attractor (red colour on

(4.2.10)), and even-numbered on the second (blue colour). The moment of

this change of the dynamics is ε ≈ 13.00744.

Examining the synchronization for ε = 13.00744, on interval τ ∈ [0, 100] the

best accuracy for each coupled pair of oscillators was obtained for τ = 42.485.

Hence, δ = 0.022 which is 0.31%xAj,1 for every j.

The described behavior keeps until the one below.
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Figure 4.2.11 Mean phase φ̃1 versus ε, ε ∈ [74.6477, 74.64788].

Figure 4.2.12 Poincare maps for 1., 4. and 10. oscillators, ε ≈ 74.6477.
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Figure 4.2.13 Attractors of 1., 4. and 10. oscillator, ε ≈ 74.6477.

Figure 4.2.14 Poincare maps for 1., 4. and 10. oscillators, ε ≈ 74.64777.
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Figure 4.2.15 Attractors of 1., 4. and 10. oscillator, ε ≈ 74.64777.

In this case, there still exists two attractors, symmetrical across the point

(0, 0) on plane, but the curve from figure (4.2.13) is doubling of the curve

from (4.2.15). This phenomenom is called doubling of torus and can be found

in [4].

Still oscillators odd-numbered are on one attractor (red colour on (4.2.15)),

and even-numbered on the second (blue colour). The moment of this change

in the dynamics is ε ≈ 74.64777. Examining the synchronization for τ ∈
[0, 100] the best accuracy for each coupled pair of oscillators was obtained

for τ = 87.36. Hence, δ = 0.0215 and its 0.16%xAj,1 for every j.

The described behavior keeps until the one below.

57



Figure 4.2.16 Mean phase φ̃j versus ε, ε ∈ [76.675, 76.675015].

Figure 4.2.17 Poincare maps for 1., 4. and 10. oscillators, ε ≈ 76.675.
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Figure 4.2.18 Attractors of 1., 4. and 10. oscillator, ε ≈ 76.675.

Figure 4.2.19 Poincare maps for 1., 4. and 10. oscillators, ε ≈ 76.67501.
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Figure 4.2.20 Attractors of 4. and 10. oscillator, ε ≈ 76.67501.

Here is the case, which had to occur due to a constant increasing of ε. From

a physical point of view, the coupling of oscillators as it is in the system

(4.2) simulates a coupling of oscillators by spring, where the coupling pa-

rameter ε is its coefficient of elasticity. The bigger it is, the spring is getting

stiffer. In this case, the strength of coupling (and thus the coefficient of

elasticity) is so large that the spring begins to imitate rod. For this reason,

the oscillators begins to vibrate periodically, which causes the external force

expressed by the sine function in the equations of the problem (4.2). Solu-

tion for odd-numbered oscillators (red colour on (4.2.20)) is suitable multiple

of function sin(0.962t), and for even-numbered oscillators (blue colour) the

same function but with opposite sign. The moment of this change in the

dynamics is ε ≈ 76.67501. Because oscillators vibrate with the same fre-

quency and amplitude, so after suitable lagging one of them of course we

get the ideal synchronization, i.e. δ = 0. Indeed, for τ = 3.265 (nota bene,

τ = 3.265 ≈ 2π
2·0.962), δ = 0.00000144, which value can be considered as

numerical zero.
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From this case, no matter how much we increase the parameter, the dynamics

can not change.

4.3 Disconnection of coupling

In this final subsection we study the dynamics of the synchronized system

when the coupling element is disconnected. Very important here is the con-

cept of rare attractor, which was introduced in the previous chapter.

To see the results better, we consider the problem on larger time horizon,

putting t̃ = 10000. Let us assume the following changes of the value of cou-

pling parameter in the problem (4.2): when t ∈ [0, 1000) ∪ (5000, 10000] we

put ε = 6 and for t ∈ [1000, 5000], ε = 0.

For t ∈ [0, 1000) oscillators are on one common attractor that resembles

the shape of the one on figure (4.2.4). While t = 1000, the coupling is

disconnected (system (4.1)). Below Poincare maps for oscillators after this

operation are presented. The time t ∈ [1000, 5000].
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Figure 4.3.1 Poincare maps for 1., 5., 6., 7. and 10. oscillator, ε = 0.

Figure 4.3.2 Poincare maps for 3., 8. and 9. oscillator, ε = 0.
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Figure 4.3.3 Poincare maps for 2. and 4. oscillator, ε = 0.

Oscillators 1., 5., 6., 7. and 10. are on 9 2π
0.962

-periodic attractor, oscil-

lators 3., 8. and 9. also on 9 2π
0.962

-periodic, but different to the previ-

ous and 2. and 4. oscillators are on quasi-periodic attractor. Note that

these attractors are the same attractors, from which previously started os-

cillators 1., 2. and 10. at the beginning of these chapter. The observed

situation is closely connected with the theorem (3.2.3) from the previous

chapter, which included the definition of rare attractor (definition (3.2.7)).

Here we manipulate the set U of possible initial values. Denoting U1
min :=

min {xj,1(1000) : j ∈ {1, . . . , 10}} , U1
max := max {xj,1(1000) : j ∈ {1, . . . , 10}} ,

U2
min := min {xj,2(1000) : j ∈ {1, . . . , 10}} , U2

max := max {xj,2(1000) : j ∈ {1, . . . , 10}}
and assuming U = [U1

min, U
1
max]× [U2

min, U
2
max], the attractors other than that

we have received are rare attractors, and thus the probability that the oscil-

lator will be attracted by one of them is very small. Hence we obtain the

result.

Another interesting phenomenon appears after reconnecting the coupling.
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Continuing the discussion, for the time t ∈ (5000, 10000], that is, when again

ε = 6 we obtain the following Poincare maps.

Figure 4.3.4 Poincare maps for 1., 3., 4., 7. and 9. oscillator, ε = 6.
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Figure 4.3.5 Poincare maps for 2., 4., 6., 8. and 10. oscillator, ε = 6.

It is phenomenon known from previous examples, when the odd-numbered

oscillators are on one attractor and the even-numbered are on attractor that is

symmetrical. However, here it takes place for more than two times lower value

of the parameter ε. Previously, the moment for this change was the value

ε = 13.00754, here its already for ε = 6 (possibly also for the lower value).

The reasons for this behavior of the system should be seen on Poincare maps

(4.3.1) - (4.3.3)), when the oscillators got attracted by non-rare attractors.

When they again start from these attractors, the coupling strength ε = 6 is

sufficient to appear the two symmetrical attractors.

The importance of the coupling strength can also be observed in other cases.

When, for example, we carry out tests as above, but for ε = 5, it turns out

that after reconnecting the coupling, we still obtain the common attractor.

On the other hand, for ε = 11, in the end we get stiffness in the system and

periodic oscillations. It is worth mentioning that this behavior may not be

observed for all larger values of ε, because when at the beginning oscillators
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starts not from common one attractor, but from two symmetrical, dynamics

get different. For example, for ε = 13.015 after reconnecting there is no

longer stiffness in the system, but there appear two symmetrical attractors.
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Chapter 5

Conclusions

Van der Pol-Duffing oscillator is an issue very rich in terms of dynamics.

The coexistence of multiple attractors, changes of their character under the

influence of changes in factors etc. are only few examples to support this

thesis. In this study, however, even though this problem is very complexity,

by coupling together several of these oscillators we can observe standardized

behavior, universal for each of them individually.

The lag synchronization is attained. For sufficient value of coupling pa-

rameter the oscillators are grouped on a common attractor in a surprising

way. If we consider any coupled pair, we note that the function of the po-

sition versus time of one of the oscillators is a modification of such function

of the other one. This graph is shifted in time for a fixed value (lag) and is

taken with opposite sign. Surprisingly, this lag is universal for each such pair

and it depends on both the coupling parameter and the initial conditions.

Moreover, for the higher value of the coupling parameter, there appear two

symmetrical attractors and oscillators are grouped on them equally (5 are

on one and 5 are on the other one). It is fascinating that even such a sig-

nificant change in the dynamics do not change the nature of the obtained

synchronization.

It is also worth to mention, that we can track the changes in the behav-

ior of common attractor (attractors) while increasing coupling parameter.
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Even after breaking the common bonds, dynamics does not interfere in an

unpredictable manner.

This results are only a starting point for further discussions. We focused

here only on connecting identical systems. But other parameters may be set

for each of the coupled oscillator, getting this way a new attractors (including

chaotics) at the start. We might also consider some of them that are on the

same attractor, but starting in its different points. A significant change

should introduce an odd number of coupled oscillators, because in this case

the situation when half of them converge to one attractor and the other half

to the other is just impossible. This is of course due to the indivisibility of

the even number by two. The behavior of the system with an odd number

of coupled oscillators should not depend on the value of this number. It

can be expected that instead of appearing more attractors system remains

on one common and increasing the strength of the coupling parameter will

only modify its shape. Even consideration of a simple system of the three

oscillators should decide this hypothesis.

There are very many of such possibilities. We can expect that the stud-

ies about proposed variations of this problem, as well as others, will give

researcher a whole of new, unusual observations.
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