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Chapter 1

Introduction

The dynamics of the pendulum or systems containing the pendulum is probably one
of the oldest scienti�c topics. Simple parametrically excited pendulum shows ex-
tremely complex behaviour [1, 2]. Miles [3] shows that for the pendulum the route
to chaos leads through symmetry breaking pitchfork bifurcation and cascades of pe-
riod doubling bifurcations. Comprehensive analytical investigation of the pendulum
with di�erent forcing was presented by Bryant and Miles [4, 5, 6]. In the forced
system one can consider two main parameters: the amplitude and the frequency
of excitation. Such a bifurcation diagram for parametrically forced pendulum with
horizontally moving point of the suspension was presented by Bishop and Cli�ord
for periodic oscillations (PO) [7] and for periodic rotations (PR) [8]. In [9] bifur-
cation analysis was extended to elliptic movement of suspension point both for PO
and PR. The analytical investigation of oscillating and rotating motions of pen-
dulum was done using averaging, small parameter, harmonic balance, and other
methods[10, 13, 14, 7, 15, 16, 17, 18, 19]. This analysis allows understanding of the
pendulum dynamics in the neighbourhood of the locked periodic solutions. The in-
teresting e�ect can be observed when the symmetry of the pendulum is broken, i.e.,
the imperfection term is added to the potential function [20]. In such an asymmet-
ric system the symmetry breaking pitchfork bifurcation disappears and the sudden
decrease of the amplitude of the PO at the �rst period doubling bifurcation can be
regarded as a precursor of an escape or problems with system behaviour.

The crucial point in modelling of such systems is a good approximation of damp-
ing coe�cients (viscous and frictional damping). There are well known methods for
linear [11, 12] systems but as far as the pendulum is oscillating with large amplitude,
the linear approximation does not give su�cient results. This problem has been
solved by Xu et al. [21, 22]. They show an e�cient method to extract the damping
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CHAPTER 1. INTRODUCTION 4

coe�cients (viscous damping and dry friction) from time series of freely oscillating
pendulum and consider the in�uence of the shaker (the source of the forcing).

Most previous works on the dynamics of the pendulum suspended on the forced
oscillator consider the linear oscillators. Such a system can be considered as a mod-
i�cation of the classical tuned mass absorber [23, 24]. Early works [25, 26] give
approximate results by the method of harmonic balance in the primary parametric
instability zone, which allows calculation of the separate regions of stable and un-
stable harmonic solutions. Further analysis allows to understand of the dynamics
around primary and secondary resonances [27, 28, 29, 30, 31]. In the recent work
Ikeda proposed the usage of two pendulums mounted in the same pivot as a tuned
mass absorber [37]. His experimental results show good agreement with the nu-
merical simulations and his model can be considered as a good alternative to one
pendulum on the pivot in the design of tuned mass absorbers.

A good understanding of dynamics of tuned mass absorber with linear base sys-
tem gives possibility to extend investigation to systems with non�linear base. Non�
linearity in considered class of systems is usually introduced by changing the linear
spring into non�linear one [32, 33] or magnetorheological damper [34]. In a few pa-
pers on this topic one can �nd an analytical study of the dynamics of Du�ng �
pendulum systems around principal and secondary resonances [30, 32, 33, 35, 36].
The main conclusion coming from the above mentioned papers is that non-linear
spring in the base system causes enlargement of parameters range where pendulum
can be used as a tune mass absorber.

In this thesis the pendulum suspended on the forced non�linear Du�ng oscillator
is considered. The purpose of analysis is to study the emergence and the stability
of PO and PR in two parameters space: the amplitude and the frequency of excita-
tion. Identi�cation of the regions with one stable periodic solution, several coexisting
periodic solutions, quasi-periodicity and chaotic behaviour is done.

The thesis is organized as follows. In Section 2 the dimensionless equations
of motion are formulated. The possible scenarios of pendulum's destabilization are
presented in Section 3. Section 4 shows two-dimensional bifurcation diagrams for PO,
PR, as well as one-parameter continuations for representative values of parameters.
The in�uence of non�linearity of spring on absorbing properties of the pendulum
is studied as well. Section 5 shows the regions in two-dimensional parameter space
where one, two, or several coexisted attractors can be observed. Finally, in Section
6 summarization of our results is done.

The thesis is realized within the TEAM programme of Foundation for Polish
Science, co-�nanced from European Union, Regional Development Fund.



Chapter 2

Model of the system

The analyzed system is shown in Fig. 2.0.1. It consists of a Du�ng oscillator with
a suspended pendulum. The Du�ng system is forced by periodical excitation and
moving in a vertical direction. The position of mass M is given by coordinate y and
the angular displacement of pendulum (position of the mass m) is given by angle
ϕ. The equations of motion can be derived using Lagrange equations of the second
type. The kinetic energy T , potential energy V , and Rayleigh dissipation D are given
respectively by the following equations:

T =
1

2
(M +m)ẏ2 −mlẏϕ̇ sinϕ+

1

2
ml2ϕ̇2, (2.0.1)

V =
1

2
k1y

2 +
1

4
k2y

4 +mgl(1− cosϕ), (2.0.2)

D =
1

2
c1ẏ

2, (2.0.3)

where M is mass of the Du�ng oscillator, m is mass of the pendulum, l is length of
the pendulum, k1 and k2 are linear and non�linear parts of spring sti�ness, and c1
is a viscous damping coe�cient of the Du�ng oscillator. The generalized forces are
given by the following formula:

Q = F (t)
∂y

∂y
+ Tq (ϕ̇)

∂ϕ

∂ϕ
, (2.0.4)

where F (t) = F0 cos νt is a periodically varying excitation with amplitude F and
frequency ν, Tq (ϕ̇) = c2ϕ̇ is a damping torque with damping coe�cient c2. The
damper of pendulum is located in a pivot of the pendulum (not shown in Fig. 2.0.1).
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Figure 2.0.1: Model of system.

The damping in the pivot of pendulum is composed of viscous and dry friction
damping [21]. Here dry friction component is neglected (to have a continuous system)
and small value of viscous part is assumed(1% of critical damping). Such assumption
does not change system dynamics.

One can derive two coupled second order di�erential equations:

(M +m)ÿ −mlϕ̈ sinϕ−mlϕ̇2 cosϕ+ k1y + k2y
3 + c1ẏ = F0 cos νt, (2.0.5)

ml2ϕ̈−mlÿ sinϕ+mlg sinϕ+ c2ϕ̇ = 0. (2.0.6)

In the numerical calculations the following values of Du�ng oscillator's parameters
are used: M = 5.0 [kg], k1 = 162.0

[
N
m

]
, k2 = 502.0

[
N
m

]
, c1 = 3.9

[
Ns
m

]
and the

following values of the pendulum's parameters: m = 0.5 [kg], l = 0.1 [m], c2 =
0.001 [Nms]. Static de�ection of mass M is neglected.

Introducing dimensionless time τ = tω1, where ω
2
1 = k1

M+m
is natural linear fre-

quency of Du�ng oscillator, dimensionless equations of the form as follows can be
reached:

ẍ− abγ̈ sin γ − abγ̇2 cos γ + x+ αx3 + d1ẋ = f cosµτ,

γ̈ − 1
b
ẍ sin γ + sin γ + d2γ̇ = 0,

(2.0.7)



CHAPTER 2. MODEL OF THE SYSTEM 7

where ω2
2 = g

l
, a = m

M+m
, b =

(
ω2

ω1

)2

, α = k2l2

(M+m)ω2
1
, f = F0

(M+m)lω2
1
, d1 = c1

(M+m)ω1
,

d2 =
c2

ml2ω2
, µ = ν

ω1
, x = y

l
, ẋ = ẏ

ω1l
, ẍ = ÿ

ω2
1 l
, γ = ϕ, γ̇ = ϕ̇

ω2
, γ̈ = ϕ̈

ω2
2
.

The dimensionless parameters of the system have the following values: a = 0.091,
b = 3.33, α = 0.031, d1 = 0.132 and d2 = 0.02. Both subsystems (Du�ng oscillator
and the pendulum) have linear resonance for µ = 1.0, so around this value one can
expect the appearance of the complex dynamics. Amplitude f and frequency µ of
the excitation are taken as control parameters.



Chapter 3

Destabilization of pendulum

System (2.0.7) possesses three qualitatively di�erent regimes. The �rst one is the
regime when the oscillations of the Du�ng system are not large enough to destabilize
the pendulum. Hence, the pendulum is at stable steady state γ = 0. The second
regime appears when pendulum destabilizes and starts oscillating. The third regime
is characterized by the rotating motions of the pendulum. The transition from the
stable quiescence state γ = 0 to oscillations can be understood from the theoretical
point of view as the destabilization of the invariant manifold γ = 0. Indeed, the
manifold γ = γ̇ = 0 is invariant with respect to (2.0.7) and the dynamics on the
manifold is described by the single Du�ng oscillator:

ẍ0 + x0 + αx30 + d1ẋ0 = f cosµτ, (3.0.1)

with an e�ective mass m +M . The linear stability of motions on this manifold is
given by the variational equation:

δγ̈ + d2δγ̇ +

(
1− 1

b
ẍ0(τ)

)
δγ = 0, (3.0.2)

which has form of a linear system with respect to the variation δγ, perturbed pe-
riodically by the Du�ng x0(τ). Such a parametrically perturbed system is known
to possess destabilization regions (parametric resonance) when the frequency of the
perturbation x0(τ) is rationally related to the frequency of the perturbation. Since
in resonances zones the Du�ng oscillator is usually locked 1 : 1 with the external
frequency, the oscillation regions in the parameter space close to µ ≈ 2 (the most
prominent resonance) as well as µ ≈ 1/2, 1, 2/3, etc. are expected.

As a result of the destabilization of pendulum, PO appear, where x0(τ) is locked
1 : 1 to the external force and γ(τ) to some other ratio depending on the resonance
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CHAPTER 3. DESTABILIZATION OF PENDULUM 9

tongue. Since after the destabilization of the pendulum, the emerged periodic solu-
tion still coexists with the unstable solution (γ = 0, x0(τ)), it will be called branching
bifurcation. In Section 4 a two-dimensional bifurcation diagram with respect to f
and µis develpoed. Branching bifurcations are shown as solid lines on this bifurcation
diagram in Figs. 4.0.1(a,b) delineating the resonance tongues.



Chapter 4

Two parameters continuation

In this section two bifurcation diagrams calculated in two-parameter space: am-
plitude f versus frequency µ of excitation are presented. Attention is focused on
bifurcations of the pendulum. Du�ng system, due to excitation, is oscillating in the
whole considered range of parameters. Such plots give an overview of system dy-
namics showing the most important periodic solutions, i.e., periodic solutions with
signi�cant area of existence. Our calculations have been performed using software
for numerical continuation Auto07p [38]. As the starting points in our calculations,
the steady state with f = 0.0 is used and follow it for di�erent values of µ detect-
ing the bifurcations leading to di�erent periodic motions. Moreover, in a few cases
calculations starts from periodic orbits calculated by the direct integration of eq.
(2.0.7). For integration the fourth order Runge-Kutta method is used. The stability
of periodic solutions is given by the set of Floquet multipliers [39].

4.1 Oscillatory solutions in plane (f, µ)

In Fig. 4.0.1(a) main resonances for which the pendulum is oscillating are shown. Dif-
ferent colours of bifurcation lines indicate the borders of di�erent resonances tongues,
i.e., areas with di�erent locking ratio between the pendulum and the excitation fre-
quency. Du�ng oscillator after branching bifurcation is always locked 1 : 1 with
excitation frequency, further bifurcations can change this ratio. The natural dimen-
sionless frequency of the pendulum and the Du�ng oscillator are equal to one. The
resonances with the following locking rations: 1 : 1 (purple line), 1 : 2 (orange line),
2 : 1 (green line), 4 : 3 (blue line), 2 : 5 (yellow line), and 2 : 3 (red line) were found.
These borders of the resonance tongues are of two kinds. Continuous lines corre-
spond to the destabilization of the pendulum at the branching bifurcation and the

10
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Figure 4.0.1: Bifurcation diagrams of the PO of the pendulum for system (2.0.7)
in two parameter space (f , µ). (a) Tongues of resonances: solid lines correspond
to the destabilization of the pendulum and birth of PO, dashed-dotted lines denote
saddle-node bifurcations of PO. Di�erent colours distinguish PO with di�erent lock-
ing ratios between the pendulum and the excitation. (b) Bifurcation lines where the
destabilization of PO occurs via symmetry breaking, period doubling, or Neimark-
Saker bifurcations. (c) One-dimensional bifurcation diagrams for µ = 1.9 (black
lines) and µ = 2.1 (grey lines) shows a route to 2 : 1 resonance in more details.
(d) One-dimensional bifurcation diagram (µ = 1.275) for 2 : 1 tongue, black line
shows PO with pendulum in hanging down position and grey one with oscillating
pendulum. In (c,d) solid and dashed lines correspond to stable and unstable PO
respectively. Abbreviations: BB - branching bifurcation, NS - Neimark-Saker bifur-
cation, PF - symmetry breaking pitchfork bifurcation, SN - saddle-node bifurcation.
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appearance of PO with oscillating pendulum, and dashed-dotted lines to saddle-node
bifurcations of PO.

Resonance 4 : 3 appears in the saddle-node bifurcation and it is stable in a large
range of parameters. Other resonances have qualitatively similar structure with three
bifurcation curves meeting in one point: two solid lines and one dashed-dotted. The
main resonant tongues (1 : 1 and 2 : 1) come very close to the axis f = 0 due
to small friction. Illustratation of the corresponding bifurcation scenarios is shown
in Fig. 4.0.1(c) using one-dimensional bifurcation diagrams for the case of 2 : 1
resonance. Fig. 4.0.1(c) shows maximum amplitude of the pendulum versus f for
f ∈ (0.0, 2.5) with �xed µ = 1.9 and µ = 2.1. Solid and dashed lines correspond
to stable and unstable PO respectively. The black line indicates PO calculated for
µ = 1.9. As it is easy to see, till f = 0.479 the pendulum is in hanging down position
and only the Du�ng system is oscillating. Then through the subcritical branching
bifurcation PO (which corresponds to the oscillations of the pendulum) appears, but
this branch of the PO is unstable (continuous line on the left side of the edge of
the tongue (Fig. 4.0.1(a) indicate this bifurcation). For f = 0.043 the saddle-node
bifurcation of PO takes place and this branch of PO stabilizes. For f = 1.316 one
can observe the symmetry breaking pitchfork bifurcation generating two asymmetric
solutions. Both branches of PO originated from pitchfork bifurcation, destabilize
in the subcritical period doubling bifurcations in which the new unstable PO with
doubled period is born. This branch of PO stabilizes in the saddle-node bifurcation.
Especially interesting is the situation shown in the enlargement in Fig. 4.0.1(c). One
can see the coexistence of the 4 : 1 asymmetric PO (both Du�ng and pendulum are
quadruple) �rst with symmetric 2 : 1 PO and then after symmetry breaking pitchfork
bifurcation of 2 : 1 resonance with two asymmetric 2 : 1 PO (after this bifurcation
Du�ng oscillator is locked 2 : 1 with excitation - the same ratio as pendulum).
Further increase of f for 4 : 1 asymmetric PO leads through the period doubling
scenario to chaos. This bifurcation route shows that scenario described by Miles
[3, 40] in the considered case of system (2.0.7) becomes more complicated.

In the same plot scenario for µ = 2.1 is presened (grey line) where the lower
equilibrium position of the pendulum is destabilized by the supercritical branching
bifurcation for f = 0.524 (bifurcation takes place at continuous line on the right side
of the edge of the tongue (see Fig. 4.0.1(a))) and the stability of this solution does
not change in the considered range of the amplitude of excitation f .

The same scenarios, with division into right (only continuous line) and left (con-
tinuous and dashed-dotted lines) sides of the edge of the tongues are observed for
other resonances (see Fig. 4.0.1(a)). In case of 2 : 1 resonance branching bifurca-
tion is a period doubling bifurcation while for other resonances branching bifurcation
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leads to di�erent locking ratios.
For 2 : 1 resonance in the range µ ∈ (1.23, 1.317) the continuous green line is

below the dashed-dotted green line. In this area one can observe the bifurcation
scenario which is shown in Fig. 4.0.1(d) for µ = 1.275 in the range f ∈ (0.0, 2.5)
versus maximum amplitude of Du�ng oscillator. The black solid line shows the
growth of the amplitude of the Du�ng oscillations in the case when the pendulum
is in the lower equilibrium position. This PO loses its stability in the saddle-node
bifurcation (the pendulum persists in the equilibrium position). Then the branching
bifurcation of the unstable PO can be observed and the appearance of new branch
of the PO for which the pendulum is in 2 : 1 resonance with excitation (grey line).
After two saddle-node bifurcations the branch of the PO stabilizes for µ = 0.129
(see zoom in Fig. 4.0.1d). Finally, for µ = 0.1378 the PO loses its symmetry in
the pitchfork bifurcation and through the Neimark-Saker bifurcation (µ = 0.1379)
becomes unstable.

Fig. 4.0.1(b) shows main destabilization scenarios for locked PO. The resonances
tongues are marked by grey lines in the background of the plot. The Neimark-Saker
bifurcations (long curve in Fig. 4.0.1(b)) destroys the 1 : 1 resonant PO, i.e., above
the line of this bifurcation locked 1 : 1 PO does not exist. Other lines are connected
to stability of 2 : 1 tongue. The dashed light blue line indicates the symmetry
breaking pitchfork bifurcation and just after it one can observe the period doubling
bifurcation (detailed route to chaos is shown in zoom in Fig. 4.0.1(c)). At the end
of period doubling line the Neimark-Saker bifurcation was detected, which merges
with the symmetry breaking pitchfork bifurcation and 2 : 1 resonance curve. Other
PO presented in Fig. 4.0.1(a) are stable in the whole covering range but they are
accessible only for carefully chosen initial conditions.

4.2 Rotation in plane (f, µ)

Fig. 4.1.1(a) shows the bifurcation diagram of rotations in two-parameter (f, µ)
plane. To observe rotational solutions pendulum has to undergo a global hetero-
clinic bifurcation. It means that this class of solutions could not be approached by
following a steady state or PO. For continuation, one has to start from an integrated
PR orbit. Two kinds of PR can occur in a considered system similarly to paramet-
rically forced pendulum. One with a constant rotational motion in one direction are
called a pure rotations [8] and the second one with change of rotation direction are
termed oscillations-rotations [41]. All lines presented in Fig. 4.1.1(a) are saddle-node
bifurcations of PR [8, 13]. One can observe the following resonant continuous PR:
three ranges of the 1 : 1 locked PR in clockwise and counter-clockwise directions
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Figure 4.1.1: Bifurcation diagram of PR for system (2.0.7) in two parameter space
(f ,µ). Lines show bifurcations to PR with di�erent locking ratios (a) and their
destruction (b).

(solid grey), the 1 : 3 in clockwise and counter-clockwise directions (solid black line).
Bifurcation curves of both clockwise and counter-clockwise directions overlap due
to the symmetry γ → −γ. The third state is a repeated sequence of oscillations-
rotations: one rotation in clockwise and one in counter-clockwise direction (1L1R).
Fig. 4.1.1(b) shows the bifurcations which destroy PR. The 1 : 1 rotational mo-
tion (solid grey line (a1)) is stable in the large range of parameters, its stability is
bounded by the Neimark-Saker bifurcation (see black line (b1)) in the right part
of Fig. 4.1.1(b)). The second 1 : 1 area is bounded by the solid grey line (a2),
with increasing parameters the Neimark-Saker bifurcation can be observed, which
destabilizes this resonance (curve (b5)). The last 1 : 1 PR (line (a3)) is bounded
by the period doubling bifurcation curve (curve (b2)). The 1L1R PR goes through
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the symmetry breaking pitchfork bifurcation (curve (b4)) and the period doubling
bifurcation (curve (b6)) �nally reaches the chaotic attractor in the period doubling
cascades (the detailed description in Fig. 4.3.1(d)). The stability of 1 : 3 PR is
bounded, on right side, by the Neimark-Saker bifurcation (curve (b3)), where one
can observe emergence of quasiperiodic motion and further transition to chaotic at-
tractor via torus breakdown with the increase of the amplitude f . On the left side
this resonance disappears in period doubling bifurcation (line (b2)).

4.3 One parameter continuation

In this section, one-parameter continuations of periodic solutions (PO as well as PR)
versus the amplitude f or frequency µ of excitation is presented. Periodic solutions
emerging in bifurcations presented in the previous sections are followed. In Fig.
4.3.1(a-c) maximum velocity γ̇ is presented while in Fig. 4.3.1(d) maximum angular
position γ. PO and PR presented in Fig. 4.3.1(a) are calculated for the frequency
of excitation �xed to µ = 0.92 and f is varied. When f ∈ (0.0, 0.812) one can
observe the oscillation of the Du�ng oscillator while the pendulum is in the lower
equilibrium position (line (1)). At the end of this interval this state loses its stability
in the subcritical branching bifurcation and unstable PO is created. For f = 0.162
the pendulum oscillations stabilize via saddle-node bifurcation and further destabilize
at f = 0.274 through the Neimark-Saker bifurcation (curve (2)). For this value of
the frequency µ there appear rotational solutions. Line (3) corresponds to rotational
resonance 1 : 3 and the line (4) indicates 1L1R PR, both solutions appear through
the saddle-node bifurcations for f = 1.11 and for f = 1.0 respectively. Line (5) shows
9 : 9 resonance stable in range f ∈ (0.49, 0.51) (this locked solution have small area
of existence and it is not shown in two-dimensional bifurcations diagram).

In Fig. 4.3.1(b) the frequency is �xed as µ = 1.2. One can observe a stable steady
state of the pendulum in the whole range of f (line (1)). In this case, the dynamics is
reduced to the motion of the forced Du�ng oscillator. The 4 : 3 locked oscillation for
f ∈ (0.628, 0.847) can be also observed(line (2)), which corresponds to the loop in
two dimensional plot (see right side of 4 : 3 resonance in Fig. 4.1.1(a)). Stable 1 : 1
rotations (line (5)) in both directions appear in the �rst range in Neimark-Saker and
become unstable in period doubling bifurcation ( f ∈ (0.39, 0.40)). In the second
range 1 : 1 PR is stabilized by the saddle-node bifurcation and becomes unstable
through the Neimark-Saker bifurcation for f ∈ (0.743, 0.938). Last two curves are
PR: 1 : 3 rotation is stable from f = 0.733 (line (3)), and 1L1R motion is stable
in range f ∈ (0.736, 1.44) (line (4)).This last 1L1R PR disappears in symmetry
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breaking pitchfork bifurcation; the detailed analysis of this PR and its bifurcations
is presented in Fig. 4.3.1(d).

Fig. 4.3.1(c) shows the periodic solutions for µ = 2.25. One can observe 2 : 1
resonant PO (line (2)), which emerges at the branching bifurcation (f = 1.39) from
stable steady state of the pendulum (line (1)) and stable 1 : 1 rotation (line (3))
which starts at the saddle-node bifurcation and terminates in the Neimark-Saker
bifurcations at the ends of the interval f ∈ (0.147, 1.75).

The last plot (Fig. 4.3.1(d)) shows a route to chaos starting from 1L1R rotations
for �xed value f = 1.25 and variable µ. For frequency µ = 0.80, one can observe
the saddle-node bifurcation (on line (1)), when µ = 1.218 the PR goes through the
symmetry breaking pitchfork bifurcation and two asymmetric 1L1R rotation appears
(line (2)). Further the range of existence of stable two dimensional quasiperiodic
solution (con�rmed by integration) can be observed, which starts and ends in the
Neimark-Saker (f = 1.249) and the inverse Neimark-Saker (f = 1.268) bifurcations
(on line (2)). Finally, the period doubling route to chaos can be observed. Only the
�rst solution branch with doubled period (line (3)) is shown.

4.4 In�uence of non�linearity of spring

The characteristic of spring have a signi�cant in�uence on transfer of energy from
Du�ng oscillator to the pendulum during resonances [30, 32]. Fig. 4.4.1 presents
these properties for two pairs of parameters: �rst for µ = 1.0 and f = 0.49 in
1 : 1 resonance tongue (a) and second for µ = 2.0 and f = 1.02 in 2 : 1 resonance
tongue (b). Black and grey colours indicate respectively the maximum position
of mass M � x and the maximum angle of the pendulum � γ as functions of the
spring non-linearity α. The continuous and dashed lines indicate respectively stable
and unstable PO. It is easy to see that for 1 : 1 resonance in the case of α = 0
linear resonance occurs (Du�ng oscillator is reduced to linear oscillator). For smaller
values of α the amplitude of oscillations is rapidly decreasing for both pendulum and
Du�ng oscillator up to α = −0.97 where the motion of the pendulum stops. Similar
decrease of the amplitude of oscillations appears for positive α,but motion terminates
at α = 4.05. For µ = 0.05 one can observe the Neimark-Saker bifurcation followed
by the inverse Neimark-Saker bifurcation for µ = 0.075. Between the bifurcation
a stable quasiperiodic motion is observed. In Fig. 4.4.1(b) one observes a stable
2 : 1 PO in the whole range of α. When the system is changing from soft to hard
characteristic of spring amplitudes of the Du�ng oscillator and the pendulum are
increasing. One can not observe a resonance of Du�ng system. In 1 : 1 resonance
a decrease of the amplitude of the oscillation of mass M can be observed, while in
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Figure 4.3.1: Continuations of periodic solutions in one parameter f for µ = 0.92
(a), µ = 1.2 (b), andµ = 2.25 (c). (d) shows period doubling route to chaos starting
from 1L1R rotational solution for �xed f = 1.25 and variable µ. Solid and dashed
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BB - branching bifurcation, PD - period doubling bifurcation, NS - Neimark-Saker
bifurcation, PF - symmetry breaking pitchfork bifurcation. Other changes of the
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others resonances (similarly as for 2 : 1 PO) this amplitude increases due to energy
transmitted from the oscillating pendulum.



Chapter 5

Coexistence of solutions

Following previous sections, see e.g. Fig. 4.3.1(a-d), multiple stable periodic solutions
often coexist for the same parameter values. This section illustrates basins of attrac-
tion of di�erent stable periodic solution. Numerical package Dynamics 2 [42] is used.
Six representative sets of parameters (f, µ) were chosen and the calculated basins
in plane (γ, γ̇) are shown (angular displacement and velocity of pendulum), where
γ is mod 2π. Initial conditions of the pendulum are taken in ranges: γ ∈ (−π, π)
and γ̇ ∈ (4,−4), initial conditions of Du�ng oscillator are �xed for each plot and
have the following values: x0 = 0, ẋ0 = 0 (a,b,d,e), x0 = 2.0, ẋ0 = 5.0 (c, f). Since
di�erent initial conditions of the Du�ng oscillator may lead to di�erent attractors
in plane (γ, γ̇), the obtained �gures show two-dimensional cross-sections of the four
directional phase space (plus the phase of the perturbation). There is no guarantee
that for other initial states of Du�ng one can reach the same set of attractors. As one
can see in Fig. 4.1.1 and Fig. 5.0.2 most of the periodic solutions are accumulated
in range µ ∈ (0.7, 1.3), so four out of six the basins in this area were calculated. In
Fig. 5.0.1(a) (µ = 0.9 and f = 0.5) �ve attractors can be found: steady state, pair of
period nine motion and chaotic motion which bifurcates from 1 : 1 PO. Then in Fig.
5.0.1(b) (µ = 1.03 and f = 1.25) one can observe �ve attractors. Two of them are
symmetric pairs of rotations (1 : 3 resonance), two corresponds to symmetric 1 : 1
PO and the last one is the 1L1R PR. Next plot (µ = 1.2 and f = 0.75) includes
seven attractors: two symmetric pairs of PR (1 : 1 and 1 : 3), 4 : 3 PO, equilibrium
of pendulum and 1L1R PR. In Fig. 5.0.1(d) (µ = 1.229 and f = 1.0) six solutions
were detected, two of them are quasiperiodic bifurcated from symmetric pair of 1 : 1
PR , pair of 1 : 3 PR, steady state of pendulum and 1L1R PR. For larger values
of excitation one can also �nd chaotic attractor, e.g. for µ = 1.6, f = 1.95 (see
Fig. 5.0.1(e)). Usually the chaotic solution dominates the whole phase space and
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the coexisting attractors have small basins of attraction and such a situation is also
observed in the investigated system (2.0.7).The last Fig. 5.0.1(f) shows a case where
one do not observe fractal basins of attraction. Most of the phase space is dominated
by period two symmetric PO, only in small range one can see basins of symmetric
pair of 1 : 1 PR.

Generally, in area where 1L1R PR exists its basin of attraction dominates in
phase space. The 4 : 3 resonance could be observed for all pairs of parameters used
in Fig. 5.0.1(a-d). Nevertheless, one can see this attractor only in Fig. 5.0.1(c) where
di�erent initial conditions of Du�ng are used. This is the evidence that not only
sensitivity on initial state is observed for pendulum but also for Du�ng. Varying
initial condition of Du�ng moves cross-section of the phase space and changes the
set of accessible attractors.

Almost all basins of attraction have a fractal structure so reaching the given
solution is strongly dependent on initial conditions. From the practical point of view
it is important to know the area with a small number or even one solution [43].
In such ranges one can be sure that the system approaches the expected solution.
In Fig. 5.0.2 the areas with di�erent types of attractors are marked: black colour
indicates one attractor (four locked PO, excluding 4 : 3 resonance, between two
branching bifurcation lines on the left and right side - the edges of the resonance
tongues), grey colour refers to two coexisting solutions (the same as for black but
with coexisting steady state of the pendulum). In the hatched area one observe
the coexistence of PR (two symmetric pairs of 1 : 1 or 1 : 3 or 1L1R PR) and the
steady state of the pendulum. The largest area with one attractor is a tongue of
2 : 1 resonance. For other resonances (1 : 1, 2 : 3, 2 : 5, 1 : 2) these areas are
small. Especially, it is surprising for 1 : 1 where the resonance tongue is large in
the parameter space but only near its edge one do not �nd the second attractor.
Areas where only Du�ng system is oscillating and pendulum is in stable equilibrium
position are not marked. In this case the dynamics of the system is reduced to the
oscillations of mass (M +m).
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Chapter 6

Conclusions

Comprehensive numerical analysis of the forced Du�ng oscillator with the suspended
pendulum is presented in this thesis. Two dimensional bifurcation diagrams with the
most representative periodic solutions and demonstrate the bifurcation route to the
locked resonances are shown. The linear resonance of both subsystems is observed
for µ = 1.0 and around this value complex dynamics with many coexisting attractors
was found, not only periodic but also quasiperiodic and chaotic ones. In the principal
resonance zone the pendulum oscillations decrease the oscillation amplitude of the
Du�ng oscillator so one can observe an energy transfer from the Du�ng oscillator to
the pendulum. These properties are observed only for 1 : 1 oscillatory resonance, for
other locked solutions (oscillations or rotations) the pendulum oscillations increase
the oscillations amplitude of the Du�ng oscillator (the control and the possible
decrease of the amplitude for other resonances will be considered in future work).
Contrary to complex dynamics around 1 : 1 principal resonance in the neighbourhood
of 2 : 1 parametric resonance, two large ranges in parameters space with only one
attractor were found (2 : 1 locked oscillations) and symmetric pair of 1 : 1 rotations
respectively. From the practical point of view (certainty of reaching the desired
attractor) such a situation is very useful and rare in non�linear system.

The in�uence of non-linearity of spring on the amplitude of oscillations For princi-
pal 1 : 1 resonance was also compared, strong non-linearity (hardening or softening)
causes lower amplitude of oscillations. For 2 : 1 parametric resonance only the
decrease of α into the softening direction causes the decrease of the oscillations am-
plitude. The existence of fractal basins of attraction is not surprising for non�linear
systems with the attached pendulum. Hence, one can consider only the probabil-
ity of reaching the chosen attractor and never have a certainty where the dynamics
of systems evolves. This is crucial when the pendulum is working as a tune mass
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absorber so the areas with a low number of coexisting solutions in the parameters
space are shown.
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