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Abstract

The doctoral dissertation contains such issues as: synchronization of dynamic
systems, non-linear dynamics and modelling. The aim of this study is to obtain
the types of synchronization of the system composed of two spherical rotating
pendula coupled by a rigid beam. The beam is attached to the ends of two mass-
less and inextensible strings. At both ends of the beam two identical pendula
are suspended.

Different mathematical models of the system have been introduced: (i) the
beam defined in the Cartesian coordinates using the Lagrange multipliers; (ii)
the beam defined in the spherical and Cartesian coordinates using the Lagrange
multipliers; (iii) the beam defined in the spherical coordinates. Based on the La-
grange equation of the second type the coupled ordinary differential equations of
the second order have been derived. The behavior of the mathematical models
has been compared with the behavior of the experimental one. The best math-
ematical model i.e., one with the beam described in the spherical coordinates,
has been chosen for further investigation.

First, system has been simplified to a zero-length beam to determine the
non-linear normal modes. Then small amplitudes of the motion of the pendula
have been assumed. These assumptions allow the analytical derivation of three
normal modes: (i) the phase shift between the pendula is π, they rotate in the
same direction, the beam is at rest; (ii) the beam and the pendula rotate in-
phase in the same direction; (iii) the beam and the pendula rotate in the same
direction but the phase shift between the pendula and the beam is π. Using the
Newton-Raphson algorithm the obtained solutions have been corrected for larger
amplitudes. In the first mode a pitchfork bifurcation has been observed, which
causes the appearance of nonsymmetrical periodic solution and destabilization
of initial symmetrical one.

The viscous damping has been modelled, in such a way that both pendula
have been equally damped. The constant force has been applied to each pen-
dulum, which is perpendicular to its projection on the XY plane. The numer-
ical analysis of the initial conditions and excitations of the system have been
performed. The following observations have been made: (i) when the initial
conditions of the pendula are different but their velocities cause the rotation in
the same direction, the pendula obtain the second normal mode and the syn-
chronization between them is complete; (ii) if the velocity causes rotation in the
opposite direction, first normal mode appears, and the pendula spin in different
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directions with the phase shift between them equal to π. In the case (ii) the ends
of the beam follow their respective pendula causing the rotation of the beam
around the mass center. The practical synchronization between the pendula is
observed. Finally, the system with harmonic excitation has been considered.
The resonance diagram shows that: (i) if the amplitude of excitation increases,
the resonant frequency increases; (ii) if the beam’s strings increase, the resonant
frequency decreases.

The real system consisting of two coupled spherical pendula has been built.
As the excited spherical pendula we use the aircraft toys with electric motors.
The results of the numerical analysis have been confirmed.
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Appended papers

Paper A

B. Witkowski, “Modelling of the dynamics of two coupled spherical pendula”,
The European Physical Journal Special Topics (2014)

Abstract:
We study the dynamics of the system of two spherical pendula mounted to the

rigid beam which hang from the unmovable frame. Using Langrange’s multipliers
the equations of motion have been derived. We identify two synchronous states in
which pendula rotate in the same or different directions. The results of numerical
simulations have been confirmed in the simple experiment.

Paper B

B. Witkowski, P. Perlikowski, A. Prasad,T. Kapitaniak,”The dynamics of co-
and counter rotating coupled spherical pendulums”, The European Physical Jour-
nal Special Topics (2014)

Abstract:
The dynamics of co- and counter-rotating coupled spherical pendula (two

lower pendula are mounted at the end of the upper pendulum) is considered.
Linear mode analysis shows the existence of three rotating modes. The linear
modes allow us to understand the nonlinear normal modes, which are visualized
in frequency-energy plots. With the increase of energy in one mode we observe
a symmetry breaking pitchfork bifurcation. In the second part of the paper we
consider energy transfer between pendula having different energies. The results
for co-rotating (all pendula rotate in the same direction) and counter-rotating
motion (one of lower pendula rotates in the opposite direction) are presented.
In general, the energy fluctuations in counter-rotating pendula are found to be
higher than in the co-rotating case.
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Nomenclature

0.1 Notation

xi, yi, zi – Cartesian coordinates of i-th point of the system

α, β, γ – independent variables describing beam’s motion

αi, βi,– independent variables describing i-th pendulum’s motion

Fi – i-th pendulum’s excitation

Fi, ω – amplitude and frequency of i-th pendulum’s excitation

cf – dumping coefficient

M – beam’s mass

b – beam’s length

l – beam’s stings length

m – i-th pendulum’s mass

h – i-th pendulum’s length

0.2 Abbreviations

DOF – degree of freedom

ICs – initial conditions

CS – complete synchronization

ICS – imperfect complete synchronization

PS – phase synchronization

APS – anti-phase synchronization

CO – co-rotating, rotating in the same direction

CU – counter-rotating, rotating in the opposite direction
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Chapter 1

Introduction

In XVII-th century Christian Huygens, as a first scientist, showed that coupled
clocks (hanging from a common support) were synchronized [1, 2]. Nowadays
many researchers repeat Huygens experiment and try to explain the mechanism
of synchronization [1, 2, 3].

Currently, there is a great number of research on the coupled pendula [1-12].
However, most of them are devoted to the planar motion of oscillating [1-12] or
rotating pendula [5, 7].

The dynamics of double pendulum has been considered in Ref. [13] where
the author used the model consisting of two rigid rods with elastic joints with
the force acting parallely to lower pendulum. The detailed stability analysis
based on the center manifold theorem has been considered for hanging down
position. Here, the period motion under the varying external force and damping
coefficient have been studied.

Lee et al. [14] analyzed the global nonlinear stable manifolds of the spherical
pendulum hyperbolic equilibrium with closed loop attitude control. Olssen [15,
16] has considered the dynamics of the spherical pendulum. For the small
pendulum’s motion the derived equation of motion has been solved analytically
using Lindstedt-Poincare method.

The phenomena of spherical pendula synchronization has been noticed by
Priest and Poth [17]. During “My Fair Lady” drama two actors were swinging on
a swing. The ends of the swigs were suspended to the ends of the movable beam.
Priest and Poth observed the same phenomena in the laboratory experiment
with two spherical pendula and they made an attempt to model such a system.
They focused only on the small oscillations along x-axis. The considered system
is highly nonlinear and the full system can induce many interesting phenomena.

1.1 Object of the Study

The considered system is composed of a beam and two spherical pendula as
presented in Figure1.1.1 . The beam of mass M is attached to the ends of a
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massless and inextensible strings, each of them has length l. At the ends of the
beam two identical pendula are suspended, each of length h and mass m.

m,h

M,b

l l

m,h

Figure 1.1.1: Model of the spherical pendula coupled by the beam.

Both pendula are externally excited.
In our studies the rotational motion of the pendula is considered.

1.2 The Doctoral Thesis and Main Objective

The thesis was formulated as follows:
“Coupled spherical pendula can synchronize. Different types of synchroniza-

tion can be identified. The change of the initial conditions and the type of an
excitation in the system of the coupled spherical pendula results in qualitative
changes in the pendula’s dynamics and the type of the synchronization between
them.”

In the presented doctoral dissertation the dynamics of two coupled spherical
pendula have been studied. The general objectives are:

� derive mathematical model of the system;

� calculate periodic rotational solutions;

� identify types of synchronization;

� investigate the influence of initial conditions on the type of synchroniza-
tion;

� investigate the influence of different excitations on the type of synchro-
nization.

� built a physical model of the system and observe its behavior;
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1.3 Thesis Organization

The Thesis is organized as follows. The methodology of research is introduced
in Chapter 2. The numerical and experimental analysis have been presented.
Section 3.1 contains the derivation of the considered model of the coupled spher-
ical pendula. In Section 3.2 the shape of linear normal mode of the simplified
system is obtained. In next section the dumping of the system is considered.
In Section 3.3 various excitations are studied. The conclusions of the results
are summarized in Chapter 4. In the last chapter future recommendations for
future work are presented. At the end of this dissertation the published papers
on the considered problems are included.



Chapter 2

Methodology

2.1 Experimental Observation

We have built the real system shown in Fig.2.1.2. We consider the pendula of
the lengths h = 0.5 [m] and masses m = 0.096 [kg] which hang from the beam
of the length b = 1.0 [m] and mass M = 0.5 [kg]. The beam hangs from the
unmovable base on the massless strings of length l = 0.35 [m] connected to
its ends. We have used toy airplanes as constant force that externally excited
pendula.

Figure 2.1.1: The real system – general view.

The system behavior has been video recorded and the beam and pendula’s
trajectories have been determined using image analysis software Kinovea. The
real system has been used to obtain the qualitative results of the types of motion.
To measure the trajectories of the pendula we need complex measuring devices.
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CHAPTER 2. METHODOLOGY 11

The detailed quantified analysis of the system’s dynamics will be performed in
future works.

Figure 2.1.2: The real system composed of coupled pendula: (1) support, (2)
strings of length l = 0.35 [m], (3) a beam of mass M = 0.5289 [kg] and length b
= 1 [m], (4) strings of length h = 0.5 [m], (5) toy airplanes as spherical pendula,
each of mass m = 0.096 [kg] and force F = 0.0206 [N].

Two types of stable synchronous motion have been identified as shown in
paper A. In the first type both pendula synchronize in-phase and rotate in the
same direction and we observe in-phase synchronization of the beam and the
pendula motion. In the second type the pendula synchronize in anti-phase and
rotate in the opposite directions. The performed experiments have not revealed
any other stable types of pendula rotating motion.

The same values of parameters (e.g. mass, length, force) have been used in
numerical calculations.
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Figure 2.1.3: Synchronous motion in the same direction.
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Figure 2.1.4: (continue Fig 2.1.3) Synchronous motion in the same direction.
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Figure 2.1.5: Synchronous motion in the opposite direction.
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Figure 2.1.6: (continue Fig 2.1.5) Synchronous motion in the opposite direction.
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2.2 Numerical Analysis

The ODEs describing the motion of the coupled spherical pendula have been
integrated by Runge-Kutta-Fehlberg method [4,5]. All numerical calculations
have been done by the author’s computer programs which were written in C
language.

Due to complexity of the system the propriety of numerical integration has
to be checked. In Hamiltonian system the total energy has been measured. Its
value was constant with 10−6 precision.

The initial conditions for linear modes have been used in full system to
obtain nonlinear normal modes. It has caused quasiperiodic orbit (KAM tori) .
To correct the obtained solution into periodic one Newton-Raphson algorithm
has been applied. The description of its method can be found in [18]. As a
correction error the following function has been used:

err =
∑n
i=1 (ϕi(t+ T )− ϕi(t))2 ,

where ϕi – i-th value of the state vector of the system (including velocity), T–
the period of the system.

The damping coefficient has been calculated as 0.01 of critical damping cf =
0.01
√
gl. The next logarithmic decrement of the damping of the numerical

system has been compared to the logarithmic decrement of damping of the
experimental one. The results have been the same.

During numerical examination of the system such diagrams have been done:
the bifurcation diagram, the basin of attraction, the resonance diagram. The
bifurcation diagram is a set of Poincare sections for bifurcation parameter. For
excitation as a force with constant value Poincare sections have been done in
the following way: due to constant value of the force there is no frequency of
excitation so referential pendulum has been chosen, when one of the chosen
variable changes the value from plus to minus then the value of the state vector
has been determined. With regard to numerical integration, point of intersec-
tion depends on integration step. So changeable step has been used, to obtain
intersection point with 10−8 precision. The initial conditions in each step on
the bifurcation diagram have been taken as a last value of state vector in the
previous step. Therefore, one can obtain how the attractor is changing.



Chapter 3

Analysis

In this chapter the mathematical model is derived. First ODEs describing the
system’s motion are introduced. The full description of the derivation of equa-
tions of motion is shown in paper A. In Section 3.1 only the Cartesian coordi-
nates will be presented. Next shape of linear and nonlinear normal modes will
be obtained in Section 3.2. The details of linear and nonlinear normal modes
are presented in paper B. Therefore, one can know the possible configurations
of the system of the periodic solution. To make the mathematical model as
similar as possible to the real one damping and excitation must be added. The
numerical analysis deals only with the periodic solutions. For constant force
basins of CU and CO solutions will be presented in Section 3.4.1. The change
of the length of the beam’s string will also give very interesting results. In Sec-
tion 3.4.2 harmonic excitation will be analyzed. The behavior of the resonant
frequency will be shown in the resonant diagram.

3.1 Mathematical Model

To derived the equations of motion we have to make a few assumptions and
simplifications. The solid beam is considered as the system of 3 points with
mass distributed in the following manner: 1/6 at the ends and 2/3 in the middle.
The full system has 7 degrees of freedom, so 7 independent variables are needed.
If we describe the position of the pendula by spherical coordinates, we get 4
independent variables, 2 for each pendulum. The question arises how to describe
the beam’s motion.

We need to describe the positions of 3 beam’s points (end and middle). The
position of the middle point is average of the positions of the beam’s ends. Point
A as in Fig 3.1.1 can be described in the same manner as pendula. To obtain
the position of end B let us divide the beam hanged on the strings into two
triangle: AO1O2 and ABO2. The angle between them is the third independent
variable.
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Figure 3.1.1: (a) model of the beam; (b) spherical pendulum described in the
changed spherical coordinates.

Than Cartesian coordinates of each point of the system is given by the
following form:

xA = l sin[α], yA = l cos[α] sin[β], zA = −l cos[α] cos[β],

xB =
l(b+ l sin[α])(l + b sin[α])

d2
− l2b cos[α]2 cos[γ]

d2
− b,

yB =
l cos[α]((b cos[γ](b+ l sin[α]) + l(l + b sin[α])) sin[β] + d b cos[β] sin[γ])

d2
,

zB = − l cos[α](cos[β](b cos[γ](b+ l sin[α]) + l(l + b sin[α]))− d b sin[β] sin[γ])

d2
.

xD = h sin[α1] + xA, yD = h cos[α1] sin[β1] + yA, zD = −h cos[α1] cos[β1] + zA,

xE = h sin[α2] + xB , yE = h cos[α2] sin[β2] + yB , zE = −h cos[α2] cos[β2] + zB .

Full derivation of these coordinates are shown in paper A. Next, the velocity
of each point can be calculated to obtain kinetic energy of the whole system.
Using the formula of kinetic and potential energy one may obtain the second
order ODEs describing the motion of the system from Lagrange equations of
the second kind.

3.2 Linear and nonlinear normal modes

Due to system’s complexity it is hard to determine normal modes for full system.
Therefore, zero-length beam has been assumed as a simplification of the system.
This assumption causes no information about the third variable of the beam.
Next small motion has been considered. Three normal modes as in Fig. 3.2.1
have been obtained analytically:
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a) b) c)
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l

Figure 3.2.1: Shapes of normal modes.

1. the phase shift between the pendula is equal to π, they rotate in the same
direction, the beam is at rest;

2. the beam and the pendula rotate in-phase in the same direction;

3. the beam and the pendula rotate in the same direction but the phase shift
between the pendula and the beam is equal to π.

For all three modes the dynamics on a KAM tori is observed . Based on the
above normal modes and using the correction algorithm of Newton-Raphson,
one can obtain the non-linear normal modes for larger energies. All calculations
of linear normal modes are shown in paper B.

3.3 Damping

So far we have considered the Hamiltonian system. Now we introduce the
viscous damping to the system. As third variable γ is virtual, the damping
function has to equally damp nodes: A,B and O1, O2 (see Fig. 3.1.1). The
dissipation function has been constructed as follows:

R(q, q̇) = 1
2Cf

(
α̇2 + β̇2 + α̇∗2 + β̇∗2 (cos (β − β1) α̇− α̇1)

2
+

+
(
β̇ − β̇1

)2
+ (cos (β∗ − β2) α̇∗ − α̇2)

2
+
(
β̇∗ − β̇1

)2)
,

where α̇∗ and β̇∗are the velocities of the additional variables, which describe
position of point B in the same way as variables α and β describe position of
point A. Details can be found in paper A.
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3.4 External Excitation

In our studies various types of external excitation such as constant force, har-
monic and van der Pol’s type have been considered.

3.4.1 Force with constant value

Contrary to harmonic excitation, constant force in three dimensional system can
cause such phenomena as: complete or practical synchronization, phase or anti-
phase synchronization or even chaotic motion. In the real system toy airplanes
with DC motors have been used as excitation. During the motion the force
is acting on to pendulum in various directions. But after some transient time
the pendulum’s rotation is stable and there are no fluctuations. That is why
the simplified model of this type of excitation is studied. Let us consider the
constant force perpendicular to its projection on the XY plane by the following
formula:

F1 = F1√
(xD−xA)2+(yD−yA)2

[(yD − yA),−(xD − xA)] =

= F1√
(sinα1)2+(cosα1 sin β1)2

[cosα1 sinβ1,− sinα1]

‖F1‖ = |F1|
√

(cosα1 sin β1)2

(sinα1)2+(cosα1 sin β1)2
+ (sinα1)2

(sinα1)2+(cosα1 sin β1)2
= |F1| .

Similarly F2 can be calculated. Using virtual work one may obtain excitation
for each variable, which is presented in paper A. If F1 and F2 have a positive
sign than the pendula rotate in anticlockwise direction. Otherwise, the pendula
rotate in clockwise direction. Due to symmetry of the system, anticlockwise and
clockwise direction derives equal results - CO. If F1 and F2 have different sign
than CU can be noticed. Let us assume that F1 has always positive sign and
|F1| = |F2| = 0.0206[N ] (same as in the real system). Depending on the F2 sign
and the initial conditions following the periodic solution can be acquired:

1. the pendula and the beam rotate in the same direction, no phase shift is
observed, pendula are in complete synchronization (it corresponds to II
normal mode, see Fig 3.4.1);

2. the pendula and the beam rotate in the same direction, π phase (practice)
synchronization is observed (it corresponds to I normal mode, see Fig
3.4.2);

3. the pendula rotate in the opposite direction, the beam’s ends follow their
respective pendula, π anti-phase (practice) synchronization is observed
(see Fig 3.4.3);
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Figure 3.4.1: (a) Shape of 1. periodic solution (b)–(d) time series of complete
synchronization for solution number 1; (e) error of synchronization.
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Figure 3.4.2: (a) Shape of 2. periodic solution (b)–(d) time series of almost
complete (practical) synchronization for solution number 2; (e) error of syn-
chronization.
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Figure 3.4.4: (a) basins of attraction of different types of synchronization
in α1=β1 plane: complete synchronization (yellow), π phase synchronization
(blue); (b) basins of attraction of π anti-phase synchronization (green) in α1=β1

plane.

In our numerical simulations we consider the following parameter values:
pendula’ masses m = 0.096 [kg], the length of the pendula h = 0.5 [m], g = 9.81
[m s−2] is an acceleration due to the gravity, beam mass M = 0.5289 [kg], the
length of the beam b = 1.0 [m], the beam’s string length l = 0.35 [m], damping
coefficients cf = 0.01

√
gh ≈ 0.0221 [N s m], force F1= F2 = 0.0206 [N].

In Fig 3.4.4(a) basins of attraction in α1=β1 plane of 1. and 2. CO periodic
solution is presented. The following ICs have been taken:α(0) = 0.0, α̇(0) = 0.0,
β(0) = 0.0, β̇(0) = 0.0, α2(0) = 0.0, α̇2(0) = 0.2, β2(0) = 0.2, β̇2(0) = 0.0, α̇1(0) =

α̇2(0) sin β1√
cosα2

1 sin β21+sinα2
1

, β̇1(0) =
˙−α2(0) sinα1 cos β1√
cosα2

1 sin β21+sinα2
1

. The ICs in the presented form

guarantee Cartesian initial velocity perpendicular to the pendulum’s projection
on the XY plane.

In Fig 3.4.4(b) the basins of attraction in α1=β1 plane of 3. CU periodic
solution is presented. The ICs have been taken in the same way as previously
but F2 = - 0.0206 [N]. There is no other solution for presented parameters and
ICs.

If the beam’s strings length is changed, then new CU solutions occur. Let
us take same ICs and parameter value as in 3. periodic solution. Then let us
increase the beam’s strings length.
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Figure 3.4.5: (a)-(f) bifurcation diagram of beam’s strings length l versus: α,
β, γ, ϕ2, θ2, θ1; (g) enlargement of (a) in the set of length l of chaotic solution.
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According to the bifurcation diagram in Fig 3.4.5 the received solutions
depend on beam’s strings length l as follow:
1. for l ∈ [0.350, 0.835)

� 3. periodic solution;

� the second pendulum crosses “zero” earlier - there is more than πanti-
phase synchronization;

� the beam rotates around its center of mass (the third variable is a set in
motion);

2. for l ∈ [0.835, 1.842):

� 3. periodic solution;

� second pendulum crosses “zero” later - there is less than πanti-phase syn-
chronization;

� the beam still rotates around its center of mass (the third variable is set
in motion);

3. for l ∈ [1.842, 1.860) there is chaotic motion;
4. for l ∈ [1.860, 2.5]:

� new periodic solution (see Fig 3.4.6);

� the second pendulum crosses “zero” in the same time as the first one -
there is π anti-phase (complete) synchronization;

� the beam does not rotate around its center of mass, it swings only in one
plane;

Figure 3.4.6: Shape of new counter rotating periodic solution.
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3.4.2 Harmonic excitation

Harmonic excitation usually causes complete synchronization in 2D plane sys-
tems and the oscillator’s period is the same as the period of excitation (or
multiple). In the resonance diagram one may obtain eigenfrequency. Let us
consider harmonic excitation in spherical pendulum (3D system). We are inter-
ested only in rotational motion . The considered force has to be perpendicular to
the pendulum’s projection on the XY plane. Let us assume ω as the excitation’s
frequency. The force is described by the following formula:

F = [F cos(ωt), F sin(ωt)] .

To obtain the excitation for each variable let us consider virtual work intro-
duced for each force:

∂L = Fx∂(xD − xA) + Fy∂(yD − yA) =

= Fh (cos(ωt)∂ sinα1 + sin(ωt)∂ cosα1 sinβ1) =

= Fh ((cos(ωt) cosα1 − sin(ωt) sinα1 sinβ1) ∂α1 + sin(ωt) cosα1 cosβ1∂β1)

Force acting on the second pendula can be derived in the same way.
In Fig 3.4.7 two-dimensional resonance diagram is presented. One parameter

is the frequency and the second one is the amplitude of excitation.
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Figure 3.4.7: Two parameter resonance diagram. At axis X the frequency ω of
force, at axis Y the amplitude F of force, at axis Z the amplitude of: (a) and
(b) α1; (c) and (d) β1

The resonance occurs near ω = 3.74 [1/s]. Next, when the amplitude of
excitation increases, then the eigenfrequency also increases. Higher excitation
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amplitude can by identified with higher total energy in the system. The same
effect has been shown in nonlinear normal modes (paper B). For higher excita-
tion amplitude, the frequency change causes a rapid damping of the pendulum’s
amplitude. After F = 0.06 [N] the new frequency appears near the resonant
one. It induces the symmetry breaking in the pendulum’s trajectory. In Fig
3.4.7 (d) there is a characteristic peak near ω = 3.47 [1/s] and for the same
value in Fig (b) there is a “cavity“. It means that the pendulum’s trajectory
is no longer a circle but an ellipse. In all studied parameters’ area the pendula
have been completely synchronized.

In Fig 3.4.8 two dimensional resonance diagram is presented. One parameter
is the frequency and the second one is the beam’s strings length l. The amplitude
of excitation is constant (F = 0.0206 [N] - the same as the constant force in
real system). One-dimensional resonance diagram is marked in a red line. If
the string’s length increases, then eigenfrequency decreases.
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Figure 3.4.8: Two-parameters resonance diagram. At axis X the frequency ω
of the force, at axis Y beam’s strings length l , at axis Z the amplitude of α1 .

Also in Fig 3.4.8 an interesting phenomenon is shown: if beam’s suspension
is longer, then the amplitude death is closer to the resonance frequency. It can
explain chaotic oscillation in the bifurcation diagram (Fig 3.4.5) in Section 3.4.1.

3.4.3 Van der Pol excitation

In our studies various excitation types have been considered. Constant force
and harmonic excitation are presented. In the dynamical system Van der Pol
excitation can be described in the following form [19, 20]:

F = α(q2 − µ)dqdt ,
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where q is a variable of the system and α, µ are constants. It contains excitation
and damping at once. Let us remind that in this study only the rotational mo-
tion is considered. If one applies this excitation in all pendula’s equations, then
the pendula swing only in one plane. It is possible to construct this excitation
as follows: let us consider the classical spherical pendulum equation, excitation
acts only on the rotational angle, the swing angel be without excitation. Next
one can describe the formula of excitation in the changed spherical coordinates
(in variables which describe full system). Let us notice that during periodic
motion the velocity does not change the sign (will be constant). Thus only the
relation between q and µ decides if Van der Pol term is excitation or damping.



Chapter 4

Summary and Conclusions

The aim of this study was to derive a mathematical model of the system, build
a physical model of the system, calculate periodic rotational solutions, identify
types of synchronization, investigate the influence of initial conditions on the
type of synchronization and investigate the influence of different excitations on
the type of synchronization.

In paper A various mathematical models of the system are presented. The
best one is chosen to perform numerical simulations. In the laboratory a real
system has been built. The behavior of the real system has been compered with
the numerical one. The results proved to be similar to each other.

For the coupled pendula and for the low values of energy (in linear approx-
imation) three rotational modes, each with its own eigenfrequency, have been
calculated in paper B. To obtain these eigenfrequencies, the theory of linear
normal modes has been applied. Next, biased on Newton-Raphson algorithm,
the obtained solutions have been continued for larger amplitudes. As one may
expect, with increasing total energy level the eigenfrequencies also increase. In
the first mode a pitchfork bifurcation has been observed. It has caused the
occurrence of new stable periodic solution.

A small perturbation of periodic initial conditions leads to the exchange of
energy between the pendula. The energy flows have been shown in paper B.
Two cases of rotations – in clock-wise and counter clock-wise directions have
been considered. In the first case for all three modes we observe the dynamics
on a KAM tori. The period of energy transfer is much longer than the natural
period of each mode.

In Section 3.4.1 the constant force has been considered. For the parameters’
value of the real system numerical simulations have been carried out. Due to
them, three periodic solutions have been obtained. In experimental simulations,
only two have been gained. The presented basins of attraction show, that dif-
ferent initial conditions cause different types of synchronization. Generally, four
types of synchronization have been observed: CS, ICS, PS, APS.

In Section 3.4.2 harmonic excitation has been studied. For high force’s am-
plitude the symmetry breaking of pendulum’s trajectory occurred. Also with

30
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growing amplitude of excitation the resonate frequency increases. After the res-
onance frequency, amplitude of motion has changed rapidly. Next, the change
of the beam’s suspension causes lower resonate frequency. It can be used to
control the system of beam and pendula motion.



Chapter 5

Recommendations for
Future Work

The considered system is highly nonlinear. It causes a lot of possible work to be
done. Nowadays many researchers investigate the clustering synchronization.
It can be interesting to add more spherical pendula to the system and observe
possible clusters. Also some parameter mismatch can bring new phenomena. In
Section 3.4.3 Van der Pol excitation is introduced. In future work the research
on this field should be done.

Within the study of the system the internal resonance has been observed.
Moreover, in paper B the energy transfer has been briefly considered. A lot of
papers presents energy harvesting from pendulum’s motion[21, 22].

Each of presented excitation will be closely investigated in the future . In[8,
7, 5] authors, based on 2D pendula, show the analytical method how to obtain
synchronous state. It can be difficult to apply this method to the system of
spherical pendula, but one may try. Next, the influence of beam’s parameter to
the pendula’s synchronization will be checked. Beam is a coupling. The beam’s
strings have been examined briefly. What happens if one changes length of the
beam?

32
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Abstract. We study the dynamics of the system of two spherical pen-
dula mounted to the rigid beam which hang from the unmovable frame.
Using Langrange’s multipliers the equations of motion have been de-
rived. We identify two synchronous states in which pendula rotate in
the same or different directions. The results of numerical simulations
have been confirmed in the simple experiment.

1 Introduction

Currently, there is a great number of research on the coupled pendula [1–17]. How-
ever most of them are devoted to the planar motion of oscillating [1–17] or rotating
pendula [16,17]. Only a few works consider spherical motion of the pendula. Olssen
has considered the dynamics of the spherical pendulum [18,19]. For the small pen-
dulum’s motion the derived equation of motion has been solved analytically using
Lindstedt-Poincare method. In [20] different methods of solving Hamiltonian systems
are presented. In the case of spherical pendulum it is advised to use Lagrange mul-
tipliers method instead of penalty method. Priest and Poth [21] have studied the
dynamics of two spherical pendula mounted to the rigid beam which hang from the
unmovable frame as shown in Fig. 1 focusing on the small oscillations along x-axis.
In the present paper we consider the dynamics of the system of Fig. 1 but do not
restrict ourselves to small oscillations, i.e., we consider large spherical displacements
of the pendula. In the modeling we consider Cartesian, Cartesian with two angles
and three angles descriptions of the system. In the first two cases the descriptions
require more variables than there are degrees of freedom so one has to use Lagrange’s
multipliers. The bond equation has square functions and it is impossible to obtain
one spatial configuration of the system. Only the third case leads to the unequivocal
description of the system. In the numerical simulation we identify two synchronous
states in which pendula rotate in the same or different directions. The existence of syn-
chronous states has been confirmed in the simple experiment. The paper is organized
as follows. The considered model of the coupled spherical pendula is introduced in
Sect. 2. Section 3 presents the results of numerical simulations and their experimental
confirmation. Finally, we conclude our studies in Sect. 4.
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Fig. 1. Model of pendula coupled by a beam.

2 General model for two spherical pendula coupled by the beam

The considered system is composed of a beam and two spherical pendulums as pre-
sented in Fig. 1. The beam of mass M is attached to the ends of a weightless and
inextensible strings, each of them has length l. At ends of the beam two identical
mathematical pendula are suspended, each of length h and mass m.
Model of following system is not straight forward to construct due its complexity.

First we introduce separate models of the beam and the pendula. Them we construct
the full model of the beam – pendula systems and derive formulas for its kinetic and
potential energies. Using these expression one may obtain the second order ODEs
describing the motion of the system, from Lagrange equations of the second kind.

2.1 Model of the pendula

2.1.1 Spherical coordinates

The spherical pendulum is typically modeled by two angles ϕ and θ. The first one
describes rotation around z axis, whereas the second one corresponds to inclination
from z axis. Then cartesian coordinates have the following form: xA = h cosϕ sin θ,
yA = h sinϕ sin θ, zA = −h cos θ. Kinetic and potential energies are given by:

Ek =
1
2m(ẋ

2
A + ẏ

2
A + ż

2
A) =

1
2mh

2(sin2 θϕ̇2 + θ̇2),

Ep = mgh(1− cos θ).
Based on Lagrange equation of the second type one can derive two coupled ODEs
of second order (equations of motion). Mass moment of inertia of ϕ depends on
sin θ. If θ is equal to 0 or π, then mass moment of inertia is equal to 0. Hence
equation of motion including ϕ terms vanishes. These points are also equilibrium
points. During motion of the pendulum, while reaching the equilibrium i.e. at the
point θ = 0 and its neighbourhood the mass moment of inertia is equal to zero, hence
numerical integration of this system is impossible.

2.1.2 Fixed spherical coordinates

To solve the problem of a singular point in the equilibrum point, we change coordinate
system to fixed spherical coordinates [22]. Angle β describes rotation about axis x and
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Fig. 2. Pendulum described by: (a) spherical coordinates, (b) fixed spherical coordinates.

angle α is between pendulum and Y Z plane, as shown in Fig. 2. The cartesian coor-
dinates are described as follow: xA = h sinα, yA = h cosα sinβ, zA = −h cosα cosβ
and the kinetic energy is given in the following form:

Ek =
1
2mh

2(cos2 αβ̇2 + α̇2),

Ep = mgh(1− cosα cosβ).
The singular point is for α = −π2 or α = π

2 . As long as α <
π
2 numerical integration

is possible.

2.2 Model of the beam

Solid beam can be considered as a system of 3 points with mass distributed in the
following manner: 16 at the ends and

2
3 in the middle [23]. Let us consider velocity

of each point in the following form: V 2A = ẋ
2
A + ẏ

2
A + ż

2
A, V

2
B = ẋ

2
B + ẏ

2
B + ż

2
B, V

2
C =

ẋ2C + ẏ
2
C + ż

2
C .

2.2.1 Cartesian description

Let us assume, that the motion of each end of the beam is described by 3 Cartesian
coordinates: xA = x1, y = y1, zA = z1, xB = x2, yB = y2, zB = z2. Coordinates
of the center of beam are the average of end-point coordinates of the beam: xC =
1
2 (x1 + x2), yC =

1
2 (y1 + y2), zC =

1
2 (z1 + z2). Kinetic and potential energies of the

beam are as follows:

Ek =
1
2M
(
1
6V
2
A +

2
3V
2
C +

1
6V
2
B

)

= 1
6M(ẋ

2
1 + ẏ

2
1 + ż

2
1 + ẋ1ẋ2 + ẏ1ẏ2 + ż1ż2 + ẋ

2
2 + ẏ

2
2 + ż

2
2),

Ep = Mg
z1 + z2
2
·

The system has 3 degrees of freedom, resulting in 6 variables (x1, y1, z1, x2, y2, z2),
so 3 of 6 variables are dependent. Relations between variables are described by the
following bond equations:

f1(x1, y1, z1) =
(
x1 − 12b

)2
+ y21 + z

2
1 − l2 = 0,

f2(x2, y2, z2) =
(
x2 +

1
2b
)2
+ y22 + z

2
2 − l2 = 0,

f3(x1, y1, z1, x2, y2, z2) = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 − b2 = 0.
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Fig. 3. Beam with mass M described by mass concentrated in 3 points.

Introducing bond equations into equations of motions and using Lagrangea’s multi-
pliers, it is possible to define the relations between dependent variables:

d

dt

(
∂(Ek − Ep)
∂q̇i

)
− ∂(Ek − Ep)

∂qi
− λ1 ∂f1

∂qi
− λ2 ∂f2

∂qi
− λ3 ∂f3

∂qi
= 0,

where: i ∈ {1, 2, 3, 4, 5, 6} and q = (x1, y1, z1, x2, y2, z2). There exist two values of each
depending variables, since bond equations are square. As the consequence, numerical
integration is ambigious, since it is unknown which solution has to be chosen.

2.2.2 Cartesian description with two angles

Geometry of the system is described by the following coordinates: x, y, z, and 2 angles
ϕ, θ. Point C is a center of beam, points A and B are at the ends of the beam given
by the formulas: xA =

1
2b cosϕ cos θ + x, yA =

1
2b sinϕ cos θ + y, zA =

1
2b sin θ + z,

xB = − 12b cosϕ cos θ + x, yB = − 12b sinϕ cos θ + y, zB = − 12b sin θ + z. One obtains
more variables than degrees of freedom of the system.

f1(ϕ, θ, x0, y0, z0) =
(
xA − 12b

)2
+ y2A + z

2
A − l2 = 0,

f2(ϕ, θ, x0, y0, z0) =
(
xB +

1
2b
)
)2 + y2B + z

2
B − l2 = 0.

Kinetic and potential energy are given by formulas:

Ek =
1
2M
(
1
6V
2
A +

2
3V
2
C +

1
6V
2
B

)
= 1
2M(ẋ

2 + ẏ2 + ż2 + 1
12b(cos

2 θϕ̇2 + θ̇2)),

Ep =Mgz.

To find dependent variables, Lagrangea’s multipliers method is used. The second order
ODEs of the system can be obtained from modified second Lagrange equation:

d

dt

(
∂Lag

∂q̇i

)
− ∂Lag
∂qi

− λ1 ∂f1
∂qi
− λ2 ∂f2

∂qi
= 0 i ∈ {1, 2, 3, 4, 5},

q = (ϕ, θ, x0, y0, z0).
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Fig. 4. Beam, which position is described by 3 angles.

There exist two values of each depending variables, since bond equations are
square. As the consequence, numerical integration is ambigious, since it is unknown
which solution has to be chosen, similarly as in Sect. 2.2.1

2.2.3 Three angles’ desription

In this section, motion of the beam is describe using three independent variables.
Cartesian coordinates of first beam’s end A can be obtained by angles: α and β,
like in spherical pendulum. Third variable is is given by the following geometric
construction: draw a line from point O2 to point A, the space between beam and
strings is divided to 2 triangles: �BO2A and �O1O2A (Figure 4). The angle γ,
between those triangles, describes unequivocally position of point B.
To fully describe the motion of the beam, Cartesian coordinates of points: A, B

and C have to be known. Point A is described by angles α and β. Coordinates of
point C are the average of the coordinates of point A and B. To obtain point B one
has to add auxiliary variables.
Let us mark line segment O2A as d. Basing on cosine theorem, one obtains: d

2 =
l2 + b2 − 2lb cos(α + π

2 ) = l
2 + b2 + 2lb sinα. Marking angle ∠O1O2A as ϕ, sinϕ =

l cosα
d
, cosϕ = b+l sinα

d
and ∠O1AO2 as θ, then using sine theorem for �O1O2A

one receives: l
sinϕ =

b
sin θ , sin θ =

b sinϕ
l
= b cosα

d
. From cosine theorem cos θ can

be obtained: cos θ = b2−l2−d2
−2ld = l+b sinα

d
. Due to the similarity between triangles

�O1O2A and �ABO2 we have the following relations between angles: ∠O1O2A is
equal to ∠O2AB, ∠O1AO2 is equal to ∠AO2B. The height l1 of triangle �ABO2 is
given by l1 = l sin θ =

bl cosα
d
and it crosses O2A at point D. Denoting O2D as l2, we

have l2 = l cos θ =
l2+bl sinα

d
.

Several transformations of local B coordinate system have to be performed as in
Fig. 4, in order to obtain Cartesian coordinates of point B corresponding to main
coordinate system. Let us consider B coordinate system as follow: x axis is parallel
to d, y axis is perpendicular to d and center of this system is in point B. First, the
translation of the system from point B to point D by l1 about z6 axis is performed.
In the next step, rotation of system by θ about x5 axis takes place. Then, translation
from point D to point O2 by l2 along x4 axis occurs. Furthermore, one rotates system
by ϕ about y3 axis and by β about x2 axis. Eventually, translation of the system from
point O2 to point O1 by b along x1 axis is performed. Each step is described by the
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following matrices:

T65 =

⎡

⎢
⎢
⎢
⎣

1 0 0 −l1
0 1 0 0

0 0 1 0

0 0 0 1

⎤

⎥
⎥
⎥
⎦
, T43 =

⎡

⎢
⎢
⎢
⎣

1 0 0 l2

0 1 0 0

0 0 1 0

0 0 0 1

⎤

⎥
⎥
⎥
⎦
, T10 =

⎡

⎢
⎢
⎢
⎣

1 0 0 −b
0 1 0 0

0 0 1 0

0 0 0 1

⎤

⎥
⎥
⎥
⎦
,

R45 =

⎡

⎢
⎢
⎢
⎣

1 0 0 0

0 cos γ − sin γ 0
0 sin γ cos γ 0

0 0 0 1

⎤

⎥
⎥
⎥
⎦
, R32 =

⎡

⎢
⎢
⎢
⎣

cosϕ 0 sinϕ 0

0 1 0 0

− sinϕ 0 cosϕ 0
0 0 0 1

⎤

⎥
⎥
⎥
⎦
,

R21 =

⎡

⎢
⎢
⎢
⎣

1 0 0 0

0 cosβ − sinβ 0
0 sinβ cosβ 0

0 0 0 1

⎤

⎥
⎥
⎥
⎦
.

Finally, coordinates of point B are as follows:
⎡

⎢
⎢
⎢
⎣

xB

yB

zB

1

⎤

⎥
⎥
⎥
⎦
= T10R21R32T43R54T65

⎡

⎢
⎢
⎢
⎣

0

0

0

1

⎤

⎥
⎥
⎥
⎦
.

After calculations, the above matrix takes the following form:

xB =
l(b+ l sinα)(l + b sinα)

d2
− l

2b cosα2 cos γ

d2
− b,

yB =
l cosα(sinβ(b cos γ(b+ l sinα) + l(l + b sinα)) + d b cosβ sin γ)

d2
,

zB = − l cosα(cosβ(b cos γ(b+ l sinα) + l(l + b sinα))− d b sinβ sin γ)
d2

·

Finally the following formulas:

Ek =
1
2M
(
1
6V
2
A +

2
3V
2
C +

1
6V
2
B

)
,

Ep =MgzC ,

describe kinetic and potential energies of the beam.

2.3 Complete system

Let us consider the full system composed of a beam and two spherical pendula. The
beam is described by model with 3 angles (as in Sect. 2.2.3) and the pendula are
described by fixed spherical coordinates as follow:

xD = h sinα1 + xA, yD = h cosα1 sinβ1 + yA, zD = −h cosα1 cosβ1 + zA,
xE = h sinα2 + xB, yE = h cosα2 sinβ2 + yB , zE = −h cosα2 cosβ2 + zB .



Synchronization of Pendula Systems 637

Kinetic energy and potencial energy is given by formulas:

Ek =
1
2

(
M
(
1
6V
2
A +

2
3V
2
C +

1
6V
2
B

)
+m

(
V 2D + V

2
E

))
,

Ep =MgzC +mg (zD + zE) ,

Lag = Ek − Ep.
Viscous damping is assumed. Variable γ describes motion of the beam around fictional
axis (diagonal between point A and O2). Damping for this variable should correspond
to damping in node O2. Let us consider new variables α

∗, β∗ in point B, derived
similarly as for point A:

xB =
l(b+ l sinα)(l + b sinα)

d2
− l

2b cosα2 cos γ

d2
− b

≡ l sinα∗ − b,

yB =
l cosα(sinβ(b cos γ(b+ l sinα) + l(l + b sinα)) + d b cosβ sin γ)

d2

≡ l cosα∗ sinβ∗,

zB = − l cosα(cosβ(b cos γ(b+ l sinα) + l(l + b sinα))− d b sinβ sin γ)
d2

≡ −l cosα∗ cosβ∗.
Then:

α∗ = arcsin
(
(b+ l sinα)(l + b sinα)− lb cosα2 cos γ

d2

)
,

β∗ = arctan
(
sinβ(b cos θ(b+ l sinα) + l(l + b sinα)) + d b cosβ sin γ

cosβ(b cos θ(b+ l sinα) + l(l + b sinα))− d b sinβ sin γ
)
·

After obtaining derivative α̇∗ and β̇∗, damping function takes the following form:

R(q, q̇) = 1
2Cf

(
α̇2 + β̇2 + α̇∗2 + β̇∗2 (cos (β − β1) α̇− α̇1)2+

(
β̇ − β̇1

)2
+ (cos (β∗ − β2) α̇∗ − α̇2)2 +

(
β̇∗ − β̇1

)2)
·

Let us consider pendula’s excitation as constant forces F1 and F2. Those forces are
prependicular to pendulum’s projection on plane XY. The formula describing the
excitation force can be found in Appendix A.

F1 = F1√
(xD − xA)2 + (yD − yA)2

[yD − yA,−(xD − xA)]

=
F1√

(sin[α1])2 + (cos[α1] sin[β1])2
[cosα1 sinβ1,− sinα1] ,

F2 = F2√
(sinα2)2 + (cosα2 sinβ2)2

[cosα2 sinβ2,− sinα2] .

Based on Lagrange equation of second type one can derive seven coupled second
ODEs. The equations of the motion of the system are following:

d

dt

(
∂Lag

∂q̇i

)
− ∂Lag
∂qi

+
∂R

∂q̇i
= Tqi , i ∈ {1, 2, 3, 4, 5, 6, 7}, (1)

q = (αβ, γ, α1, β1, α2, β2),



638 The European Physical Journal Special Topics

D
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(a) (b)
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Fig. 5. (a)–(b) Beam’s and pendula’s rotating motion in the same direction in phase:
(a) experimental observation, (b) numerical simulation; (c)–(d) Beam’s and pendula’s
rotating motion in opposite direction in phase with shift π: (c) experimental observation,
(d) numerical simulation.

Tqi is external momentum acting on i− th varaiable. The equations of the motion of
the system can be found in Appendix B.

3 Experimental observation and numerical simulations

In our simple experiment we consider pendula of the lengths h=0.5m and masses
m=0.096 kg which hang from the beam of the length b=1.0m and the mass
M =0.5 kg. The beam hangs from the unmovable base on the massless strings of
the length l=0.35m connected to its ends. To compensate the effect of damping we
excite the rotations of the pendula by two 1.5V DC motors (for better visualization
we use toy airplanes manufactured by Premier Portfolio).
The system behavior has been video recorded and the beam and pendula’s

trajectories have been determined using image analysis software Kinovea. The
video clip describing the synchronous motion of pendula can be found at: http://
team.kdm.p.lodz.pl/movies.html.
Two types of stable synchronous motion have been identified as shown in Fig. 5a,c.

In the first type both pendula synchronize in-phase and rotate in the same direction
and we observe in-phase synchronization of the beam and pendula motion (Fig. 5a).
In the second type the pendula synchronize in anti-phase and rotate in the opposite
directions (Fig. 5c). The performed experiments have not revealed any other stable
types of pendula rotating motion.
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Fig. 6. Trajectory of the beam and the pendulas displacements: l = 0.35, b = 1, h = 0.5,
g = 9.81, M = 0.5, m = 0.096, Cf = 0.01

√
gh, F1 = 0.0206, F2 = 0.0206, (a–c) both

pendula rotate in the same direction (α = 0, β = 0, γ = 0, α1 = π/6, β1 = 0, α2 = π/5,
β2 = 0, α̇ = 0, β̇ = 0, γ̇ = 0, α̇1 = 0, β̇1 = 1, α̇2 = 0, β̇2 = 1.2); (d–f) both pendula rotate
in opposite directions (α = 0, β = 0, γ = 0, α1 = π/6, β1 = 0, α2 = π/5, β2 = 0, α̇ = 0,
β̇ = 0, γ̇ = 0, α̇1 = 0, β̇1 = 1, α̇2 = 0, β̇2 = −1.2).

Our experimental observations have been confirmed in numerical simulations as
can be seen in Fig. 5b,d (we use the following parameter values: M =0.5 kg, b=1m,
l=0.35m, h=0.5m, m=0.096 kg). The equations of motion 1 have been integrated
using Runge-Kutta-Fehlberg 45 method.
During the first type of synchronous rotating motion both pendula and the beam

rotate in the x − y plane (there is no motion along z-axis) as one observes in
Fig. 6a–c where the trajectories of the beam’s end A, beam’s center C and pen-
dulum D have been shown. The second type of synchronous motion is characterized
by the small motion along z-axis (Fig. 6d–f) and the trajectories of the beam’s end
A, beam’s center C and pendulum D create three-dimensional closed curves.

4 Summary

We study the dynamics of two spherical pendula mounted to the rigid beam which
hang from the unmovable frame. The beam of mass M has been discretized by three
masses (two masses 16M located at the ends of the beam and mass

2
3M located at the

beam’s center). We describe in details the derivation of the unequivocal equations of
motion. In the numerical simulations we identify two different types of the synchro-
nous motion of the spherical pendula, i.e., both pendula rotate in the same direction
(co-rotating pendula) or the pendula rotate in the opposite direction (counter-rotating
pendula). During co-rotating motion the beam does not oscillate around z-axis (it
oscillates in the z − x plane). The center of the beam is moving along the three-
dimensional closed curve when the pendula counter-rotate. Numerical results have
been verified in the simple experiment which allows for the observation of the same
types of synchronous motion.

This work has been supported by the Foundation for Polish Science, Team Programme under
project TEAM/2010/5/5. BW would like to thank to prof. Kapitaniak and prof. Strzalko
for their kind help and suggestions.
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Appendix A

Damping function takes the following form:

R(q, q̇) = 1
2Cf (α̇

2 + β̇2 + α̇∗2 + β̇∗2(cos(β − β1)α̇− α̇1)2 + (β̇ − β̇1)2
+(cos(β∗ − β2)α̇∗ − α̇2)2 + (β̇∗ − β̇1)2),

where:

α̇∗=−4l2bd′ cosα2 sin(γ2
)2
+
d
(
α′d2 cosα+ l2b

(
−2α′ sin 2α sin(γ2

)2
+ γ′ cosα2 sin γ

))

d

√

d4 −
(
d2 sinα+ 2l2b cosα2 sin

(
γ
2

)2)2
,

β̇∗ =
bQ

(b cos γ (b+ l sinα) + l (l + b sinα))
2
+ b2d2 sin γ2

+ β̇,

where:

Q = d′ sin γ(b cos γ(b+ l sinα) + l(l + b sinα))+ d
(
−4α′lb cosα cos (γ2

)3
sin
(
γ
2

)3
sin γ2

+ γ′
(
b2 + l2 cos γ + lb sinα(1 + cos γ)

) )

d =
√
l2 + b2 + 2lb sinα, d′ =

lbα′ cosα√
l2 + b2 + 2lb sinα

·

Then damping for each variable is give as:

Cq =
∂R

∂q̇
,

where q = (αβ, γ, α1, β1, α2, β2).
We assume that external force is prependicular to pendulum’s projection on plane

XY:

F1 = F1√
(xD − xA)2 + (yD − yA)2

[yD − yA,−(xD − xA)]

=
F1√

(sinα21 + (cosα1 sinβ1)
2
[cosα1 sinβ1,− sinα1] .

F2 = F2√
(sin[α2])2 + (cosα2 sinβ2)2

[cosα2 sinβ2,− sinα2] .

To obtain excitation for each variable let us consider virtual work introduced for each
force:

∂L = F1x∂(xD − xA) + F1y∂(yD − yA) + F2x∂(xE − xB) + F2y∂(yE − yB)
=

F1h√
(sinα1)2 + (cosα1 sinβ1)2

(sinβ1∂α1 − sinα1 cosα1 cosβ1∂β1)

+
F2h√

(sinα2)2 + (cosα2 sinβ2)2
(sinβ2∂α2 − sinα2 cosα2 cosβ2∂β2),
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where ∂(xD − xA) and ∂(yD − yA) and ∂(xE − xB) and ∂(yE − yB) are virtual
displacments respectively for F1 and F2.
Then one obtains:

Tα1= F1h
sinβ1√

(sinα1)2 + (cosα1 sinβ1)2
,

Tβ1= −F1h
sinα1 cosα1 cosβ1√

(sinα1)2 + (cosα1 sinβ1)2
,

Tα2= F2h
sinβ2√

(sinα2)2 + (cosα2 sinβ2)2
,

Tβ2= −F2h
sinα2 cosα2 cosβ2√

(sinα2)2 + (cosα2 sinβ2)2
.

We assume that beam has no external excitation: Tα = 0, Tβ = 0, Tγ = 0.

Appendix B

Coupled second order ordinary differential equations, which describe the system of
Fig. 1 can by written by matrices of: mass M 7x7, torque T 7x1, damping C 7x1 and
rest RR 7x1:

M(q, q̇)q̈ + C(q)q̇ +RR = T,

q = (αβ, γ, α1, β1, α2, β2),

M11 =
1

48d8
l2
(
4d6(4l2M − b2(M − 3m)) + 16d8(M + 3m)

−d2b2(32l4 − 55l2b2 + 32b4)(M + 3m) + 4b2(8l6 + l4b2 + l2b4 + 8b6)
×(M + 3m) + 4d4(4l4(M + 3m) + 2l2b2(M + 3m) + b4(7M + 9m))
+ b
(
8b(d6M − 2d2l2b2(M + 3m) + 6l2b2(l2 + b2)(M + 3m)

+2d4l2(4M + 9m)) cos θ + 4l2b3(M + 3m) cos 4α cos
(
θ
2

)2
(4(l2 + b2)

−11d2(4(l2 + b2)− 13d2) cos θ) + b(−4d6 − 7d2l2b2 + 12l2b2(l2 + b2)
+ 4d4(2l2 + b2)(M + 3m)) cos 2θ + 4b cos 2α(−3d6(M +m)
−d2(8l4 − 5l2b2 + 8b4)(M + 3m) + 4(2l6 + l4b2 + l2b4 + 2b6)(M + 3m)
+ d4(−4l2(M + 3m) + b2(5M + 3m))− 2(d6M + 6d4l2m+ 8d2l2b2(M + 3m)
−8l2b2(l2 + b2)(M + 3m)) cos θ + (d6 − (d4 + 5d2l2 − 4l4)b2 + 4l2b4)
×(M + 3m) cos 2θ) + 4l(4d6M + 6d2b2(l2 + b2)(M + 3m)
+ 2b2(4l4 − 5l2b2 + 4b4)(M + 3m) + d4(b2(M − 3m) + 8l2(M + 3m))
+ 2(2d6M + 4l2b4(M + 3m) + 4d2b2(l2 + b2)(M + 3m)

+ d4(b2M + 4l2(M + 3m))) + cos θ + b2(d4 + 2l2b2 + 2d2(l2 + b2))

×(M + 3m) cos(2θ)) sinα+ 4lb2(6d2(l2 + b2)(M + 3m)
+ (8l4 − 7l2b2 + 8b4)(M + 3m)− 3d4(M + 5m) + 2(6l2b2(M + 3m)
+ 4d2(l2 + b2)(M + 3m)− 3d4(M + 4m)) cos θ − (3d4 − 3l2b2 − 2d2(l2 + b2))
× (M + 3m) cos 2θ) sin 3α+ 32l3b4(M + 3m) cos ( θ2

)4
sin 5α

))
,
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M12 =
l3l2

6d5
sin θ cosα3

(−3d2M + 2l2M − 6d2m+ 6l2m+ 2ll(M + 3m) sinα
−2(M + 3m) cos θ (d2 − l2 − ll sinα)),

M13 =
l2b

6d6
sin θ cosα(lb2(M + 3m) cosα2(−3d2 + 2l2 + 2b2 + 6lb sinα

+2 cos θ(−2d2 + l2 + b2 + 3lb sinα)) + 12 (2d4lM + 4d2l3M + d2lb2M
+2l3b2M + 2lb4M + 12d2l3m+ 3d2lb2m+ 6l3b2m+ 6lb4m

+ lb2(M + 3m) cos 2α(2(l2 + b2)− 3d2 + 2(l2 − 2d2 + b2) cos θ) + 2d4bM sinα
+8d2l2bM sinα+ l2b3M sinα+ 24d2l2bm sinα+ 3l2b3m sinα+ l2b3M sin 3α

+3l2b3m sin 3α+ b(M + 3m) cos θ((−4d4 + l2b2 + 4d2(l2 + b2)) sinα
+ lb(2(2d2 + l2 + b2) + lb sin[3α])))),

M14 = hlm (cosα cosφ1 + sinα cos (β − θ1) sinφ1) ,
M15 = −hlm sinα sin (β − θ1) cosφ1,

M16 =
hlm

d4
(cosφ?2(cosα(d2l2 − (d2 + l2)b2 + 2b4 + l2b2(cos 2α+ 2 cosα2 cos θ))

+ lb(d2 − l2 + b2+ d2 cos θ sin 2α) + (cos(β − θ2))(b2 cos θ(lb+ (d2+ l2) sinα))
+ l2(lb+(d2+ b2) sinα)+ lb cos 2α(l2−d2+ (b2− d2) cos θ + lb(1+cos θ) sinα))
− db(lb cosα2 + d2 sinα) sin θ sin(β − θ2) sinφ2),

M17 =
hlm

d4
cosφ2

(−dlb2 cosα2 cos (β − θ2) sin θ − d3b cos (β − θ2) sinα sin θ
− (b2 cos θ (lb+ (d2 + l2) sinα)+ l2 (lb+ (d2 + b2) sinα)+ lb cos (2α)
× (−d2 + l2 + (−d2 + b2) cos θ + lb(1 + cos θ) sinα)) sin (β − θ2)

)
,

M21 =
l3b2

6d5
cosα3

(−3d2M + 2l2M − 6d2m+ 6l2m+ 2lb(M + 3m) sinα
−2(M + 3m) cos θ (d2 − b2 − lb sinα)) sin θ,

M22 =
l2

12d4
cosα2

(
4d4(M + 3m) +

(
4l4 + 3l2b2 + 2b4

)
(M + 3m)

+ 2d2
(
2l2M + b2(M + 3m)

)
+ b
(−l2b(M + 3m) cos 2α(3 + cos 2θ)

+ 4l
(
d2M +

(
2l2 + b2

)
(M + 3m)

)
sinα+ b(M + 3m)

× cos 2θ (−2d2 + l2 + 2b2 + 4lb sinα)+ 4 cos θ(b+ l sinα)
× (d2M + 2l2(M + 3m) + 2lb(M + 3m) sinα))),

M23 =
1

6d3
l2b cosα2

(
2b(M + 3m)(b+ l sinα) + cos θ

(
d2M + 2l2(M + 3m)

+2lb(M + 3m) sinα)),

M24 = hlm cosα sin (β − θ1) sinφ1, M25 = hlm cosα cos[β − θ1] cos[φ1],

M26 =
1

d2
hlm cosα (cos θ2 (b cos θ(b+ l sinα) + l(l + b sinα)) sinβ+ db cosβ sin θ)

−(cosβ(b cos θ(b+ l sinα) + l(l + b sinα))− db sinβ sin θ) sin θ2) sinφ2,
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M27 =
1

d2
hlm cosα cosφ2 (cos (β − θ2) (b cos θ(b+ l sinα) + l(l + b sinα))

−db sin θ sin (β − θ2)),

M31 =
1

6d6
l2b sin θ cosα

(
l
(
d4M + d2

(
2l2 − b2) (M + 3m) + 2b2 (l2 + b2) (M + 3m))

+ b
(
2lb
(
l2 + b2

)
(M + 3m) cos θ+ lb(M + 3m) cos 2α

(−3d2 + 2 (l2 + b2)

+ 2
(
l2 − 2d2 + b2) cos θ)+ (d4M + 4d2l2(M + 3m) + 2l2b2(M + 3m)

−2(d4 − l2b2 − d2(l2 + b2)) (M + 3m) cos θ) sinα
+4l2b2(M + 3m) cos

(
θ
2

)2
sin 3α

))
,

M32 =
l2b

6d3
cosα2

(
(M + 3m)

(
2b(b+ l sinα) + cos θ sinα(2l2 + 2lb)

)
+ d2M cos θ

)
,

M33 =
l2b2(M + 3m)

6d4
cosα2

(
d2 + l2 + b2 +

(
d2 − l2 − b2) cos 2θ + 4lb sinα sin θ2),

M34 = 0, M35 = 0,

M36 =
hlbm

d2
cosα(l cosα cosφ2 sin θ + (cos (β − θ2) (b+ l sinα) sin θ

+ d cos θ sin (β − θ2)) sinφ2),

M37 =
hlbm

d2
cosα cosφ2(d cos θ cos (β − θ2)− (b+ l sinα) sin θ sin (β − θ2)),

M41 = hlm (cosα cosφ1 + sinα cos (β − θ1) sinφ1),

M42 = hlm cosα sin (β − θ1) sinφ1, M43 = 0, M44 = h2m,

M45 = 0, M46 = 0, M47 = 0,

M51 = −hlm sinα sin (β − θ1) cosφ1, M52 = hlm cosα cos (β − θ1) cosφ1,

M53 = 0, M54 = 0, M55 = h
2m cosφ21, M56 = 0, M57 = 0,

M61 =
hlm

d4
(
cosφ2

(
cosα

(
d2l2 − (d2 + l2) b2 + 2b4 + l2b2 (cos 2α+ 2 cosα2 cos θ))

+ lb
(
d2 − l2 + b2 + d2 cos θ) sin 2α)+ sinφ2

(
cos (β − θ2)

(
b2 cos θ (lb

+(d2 + l2) sinα)+ l2
(
lb+
(
d2 + b2

)
sinα

)
+ lb cos 2α

(−d2 + l2 + (−d2 + b2)
× cos θ + lb(1 + cos θ) sinα))− db (lb cosα2 + d2 sinα) sin θ sin (β − θ2)

))
,

M62 =
hlm

d2
sinφ2 cosα(cos θ2((b cos θ(b+l sinα)+ l(l+ b sinα)) sinβ + db cosβ sin θ)

− sin θ2(cosβ(b cos θ(b+ l sinα) + l(l + b sinα))− db sinβ sin θ)),
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M63 =
hlbm

d2
cosα (l cosα cosφ2 sin θ+ sinφ2 (cos (β − θ2) (b+ l sinα) sin θ

+ d cos θ sin (β − θ2))) ,
M64 = 0, M65 = 0, M66 = h

2m, M67 = 0,

M71 = −hlm
d4
cosφ2

(
d2 sinα

(
db cos (β − θ2) sin θ + sin (β − θ2)

(
l2 + b2 cos θ

+ lb (1 + cos θ) sinα))+ +lb cosα2 (db cos (β − θ2) sin θ+ sin (β − θ2)
× (−d2 + 2l2 − (d2 − 2b2) cos θ + 2lb (1 + cos θ) sinα))),

M72 =
hlm

d2
cosα cosφ2 (cos (β − θ2) (b cos θ (b+ l sinα) + l (l + b sinα))

−db sin θ sin (β − θ2)) ,

M73 =
hlbm

d2
cosα cosφ2 (d cos θ cos (β − θ2)− sin θ sin (β − θ2) (b+ l sinα)) ,

M74 = 0, M75 = 0, M76 = 0, M77 = h
2m cosφ22,

RR1 =
1

96d10
l(2lb cosα

(
4l3b4(M + 3m) cos 4α cos

(
θ
2

)2 (−53d2 + 16 (l2 + b2)

+
(
16
(
l2 + b2

)− 59d2) cos θ)+ 4lb2 cos 2α (−3d2 (16l4 − 17l2b2 + 16b4)

×(M + 3m) + 16 (2l6 + l4b2 + l2b4 + 2b6) (M + 3m) + 6d6(M + 7m)
−2d4 (13l2(M + 3m)+ 4b2(M + 6m))+ 8 (−8d2l2b2(M + 3m) + 8l2b2(l2+ b2)
×(M + 3m) + d6(2M + 9m)− 3d4(b2(M + 3m) + l2(M + 4m))) cos θ
+
(
10d6 − 6d4l2 + (16l4 − 8d4 − 19d2l2) b2 + 16l2b4) (M + 3m) cos 2θ)

+ l
(−8d8M − d2b2 (64l4 − 113l2b2 + 64b4) (M + 3m) + 16b2(8l6 + l4b2

+ l2b4 + 8b6)(M + 3m) − 24d6 (2l2m+ b2(M + 3m))+ 8d4(4l4(M + 3m)
+ 5l2b2(M + 3m) + 2b4(5M + 9m)

)− 8 (d8M + 4d2l2b4(M + 3m)
−24l2b4 (l2 + b2) (M + 3m) + 2d6 (l2(M + 3m) + b2(2M + 9m))

−4d4b2 (b2(M + 3m) + l2(5M + 12m))) cos θ + b2 (−24d6 − 17d2l2b2
+48l2b2

(
l2 + b2

)
+ 8d4

(
3l2 + 2b2

))
(M + 3m) cos 2θ

)
+ 4b

(−6d8(M +m)
+ 8l2b2

(
4l4 − 5l2b2 + 4b4) (M + 3m) + 2d2 (8l6 + 7l4b2 + 7l2b4 + 8b6)

×(M + 3m) + d6 (2b2(5M + 3m)− 4l2(M + 6m))+ d4b2 (−16b2(M + 3m)
+ l2(47M + 129m)

)
+ 4
(−d8M + d6l2(M − 6m) + 8l4b4(M + 3m)

+ 10d2l2b2
(
l2 + b2

)
(M + 3m) + d4l2

(
4l2(M + 3m) + b2(5M + 12m)

))
cos θ

+
(
2d8 − 2d6b2 + 5d4l2b2 + 8l4b4 + 10d2l2b2 (l2 + b2)) (M + 3m) cos 2θ) sinα

+4l2b3
(
30d2

(
l2 + b2

)
(M + 3m) + 4

(
8l4 − 7l2b2 + 8b4) (M + 3m)

− d4(41M + 135m)+ 4 (12l2b2(M + 3m) + 10d2 (l2 + b2) (M + 3m)
−3d4(5M + 16m)) cos θ − (19d4 − 12l2b2 − 10d2 (l2 + b2)) (M + 3m) cos 2θ)
× sin 3α+ 128l4b5(M + 3m) cos ( θ2

)4
sin 5α

)
α′2 + 8d2lb

((
2b
(
d6M − 2d2l2b2
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×(M + 3m) + 6l2b2 (l2 + b2) (M + 3m)+ 2d4l2(4M + 9m)
)
+ 2b

(−d6M
− 6d4l2m− 8d2l2b2(M + 3m) + 8l2b2 (l2 + b2) (M + 3m)) cos 2α
+ l
(
lb3(M + 3m) cos 4α

(
4
(−3d2 + l2 + b2)+ (−13d2 + 4 (l2 + b2)) cos θ)

+4
(
d6M + 5l2b4(M + 3m) + 4d2b2

(
l2 + b2

)
(M + 3m) + d4

(
2l2(M + 3m)

−b2(M + 6m))+ b2 ((6l2b2(M + 3m) + 4d2 (l2 + b2) (M + 3m)
− 3d4(M + 4m)) cos 2α+ (M + 3m) (−2d4 + 5l2b2 + 4d2 (l2 + b2)

+
(−6d4 + 6l2b2 + 4d2 (l2 + b2)) cos 2α) cos θ)) sinα)) sin θ

+2l3b4(M + 3m) csc
(
θ
2

)2
sin 5α sin θ3 + 12b(M + 3m)

(−4d6 − 7d2l2b2
+12l2b2

(
l2 + b2

)
+ 4d4

(
2l2 + b2

)
+ 4
(
d6 − (d4 + 5d2l2 − 4l4) b2

+4l2b4
)
cos 2α

)
sin 2θ

)
α′θ′ − 4d4

(
l cosα

(
−8l3b3(M + 3m) cos 4α cos ( θ2

)4

+ lb
(
2d4M+

(
8l4+ 3l2b2+ 4b4

)
(M+ 3m) + 4d2(b2(M+ 3m) + l2(2M+ 3m))

+ 2
(
d4M + 10l2b2(M + 3m) + 2d2

(
l2(M + 3m) + b2(2M + 3m)

))
cos θ

+ b2
(
l2+ 4b2

)
(M+ 3m) cos 2θ

)
+2
(
4d6(M+ 3m)+ 2l2b2

(
2l2+b2

)
(M+ 3m)

+ 2d4
(
2l2M + b2(M + 3m)

)
+ d2

(
4l4(M + 3m) + 2b4(M + 3m)

+ l2b2(4M + 9m)
)
+ b2

((
4d4M + 4l2

(
l2 + b2

)
(M + 3m)

+ d2l2(13M + 36m)
)
cos θ + 2

(−d4 + (d2 + 2l2) b2) (M + 3m) cos 2θ)) sinα
+2lb cos 2α

(−3d4M + 2 (2l4 + b4) (M + 3m)− 2d2 (b2(M + 3m)
+ l2(2M + 9m)

)− (3d4M − 8l2b2(M + 3m) + 2d2 (3l2(M + 3m)
+ b2(2M + 9m)

))
cos θ + 2b(M + 3m) cos 2θ

(
b3 − 2d2b− l (d2 − 2b2) sinα))

+2l2b2
(
2
(
2l2 + b2

)
(M + 3m)− d2(2M + 9m) + (4 (l2 + b2) (M + 3m)

− 3d2(M + 4m)) cos θ) sin 3α)β′2 + 2dlb cosα (4lb(M + 3m) cosα2 cos 2θ
× (b2 − d2+ lb sinα)+ 2b(M + 3m) (l (d2 + 3b2)+ (4d2 + 3l2) b sinα)

+2lb(M + 3m) cos 2α
(
4
(
l2 − d2) cos θ + 3 (b2 − d2 + lb sinα))

+4 cos θ
((
d4M + 2d2l2(M + 3m) + l2b2(M + 3m)

)
sinα+ l2b(M + 3m)

×(2l + b sin 3α)))β′θ′ + 4lb cosα
(
2lb2(M + 3m) cos 2α cos

(
θ
2

)2

× (d2+ 2 (−2d2 + l2 + b2) cos θ)+ l ((d4M + d2 (2l2 − b2) (M + 3m)
+ 2b2

(
l2+ b2

)
(M+ 3m)

)
cos θ+ b2(M+ 3m)

(
d2+ l2 + b2 +

(
l2+ b2

)
cos 2θ

))

+ b
((
d4M + 4d2l2(M + 3m) + 2l2b2(M + 3m)

)
cos θ+ (M + 3m)((d2 + l2)

× (d2 + b2)+ (l2b2 − d4 + d2 (l2 + b2)) cos 2θ)) sinα+ 4l2b3(M + 3m)
× cos ( θ2

)2
cos θ sin 3α

)
θ′2 + 12d2

(
1
2g(M + 2m)

(
2 cosβ

(
l3b+ d4 sinα

+ l2
(
d2 + b2

)
sinα+ lb cos 2α

(
l2 − d2 + (b2 − d2) cos θ + lb sinα)

+ b2 cos θ
(
lb+
(
d2 + 2l2 cosα2

)
sinα

))− 2db (lb cosα2 + d2 sinα) sinβ sin θ)

+2d4hm cos (β − θ1) cosφ1 sinαθ′21 + hm cosφ2(2 cos (β − θ2)
× (b2 cos θ (lb+ (d2 + l2) sinα)+ l2 (lb+ (d2 + b2) sinα)+ lb cos 2α (l2 − d2
+(b2 − d2) cos θ + lb(1 + cos θ) sinα))− 2db (lb cosα2 + d2 sinα)

× sin θ sin (β − θ2)) θ′22 + 4d4hmθ′1φ′1 sinα sin (β − θ1) sinφ1
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+4hm
(
dlb2 cosα2 cos (β − θ2) sin θ+ d3b cos (β − θ2) sinα sin θ

+
(
b2 cos θ

(
lb+
(
d2+ l2

)
sinα

)
+ l2
(
lb+
(
d2+ b2

)
sinα

)
+ lb cos 2α(−d2 + l2

+(b2 − d2) cos θ + lb(1 + cos θ) sinα)) sin (β − θ2)
)
sinφ2θ

′
2φ
′
2 + 2hm

× (d4 (cos (β − θ1) cosφ1 sinα− cosα sinφ1)φ′21 + (cos(β − θ2) cosφ2
× (b2 cos θ(lb+ (d2 + l2) sinα)+ l2 (lb+ (d2 + b2) sinα)+ lb cos 2α(l2 − d2
+(b2 − d2) cos θ + lb(1 + cos θ) sinα))− db cosφ2

(
lb cosα2 + d2 sinα

)

× sin θ sin (β − θ2)− cosα
(
d2l2 − (d2 + l2) b2 + 2b4 + lb (lb(cos 2α

+2 cosα2 cos θ)+ 2
(
d2 − l2 + b2 + d2 cos θ) sinα)) sinφ2

)
φ′22
))))
,

RR2 =
1

48d7
l cosα(2l2b2 cosα(2(lb(10l2(M+ 3m)− d2(5M+ 6m))+ lb(10l2(M+ 3m)

−d2(17M + 42m)) cos 2α+ (−18d4(M + 2m) + 12d2l2(M + 3m)
+ 5l2b2(M + 3m)) sinα+ 5l2b2(M + 3m) sin 3α) sin θ + (M + 3m)

×(2(b2(6d2 + 5l2)− 6d4)− 2lb(d2 − 5b2)) sinα+ 2lb cos 2α(5b2 − 7d2
+5lb sinα)) sin 2θ)α′2 + 4dlα′((−8l3b3(M + 3m) cos 4α cos( θ2 )4 + lb(2d4M
+(8l4 + 3l2b2 + 4b4)(M + 3m) + 4d2(b2(M + 3m) + l2(2M + 3m))

+ 2(d4M + 10l2b2(M + 3m) + 2d2(l2(M + 3m) + b2(2M + 3m))) cos θ

+ b2(l2 + 4b2)(M + 3m) cos 2θ) + 2(4d6(M + 3m) + 2l2b2(2l2 + b2)(M + 3m)

+ 2d4(2l2M + b2(M + 3m)) + d2(4l4(M + 3m) + 2b4(M + 3m)

+ l2b2(4M + 9m)) + b2((4d4M + 4l2(l2 + b2)(M + 3m)

+ d2l2(13M + 36m)) cos θ + 2(−d4 + (d2 + 2l2)b2)(M + 3m) cos 2θ)) sinα
+2lb cos 2α(2(2l4+ b4)(M+ 3m)− 3d4M − 2d2(b2(M+ 3m) + l2(2M + 9m))
−(3d4M − 8l2b2(M + 3m) + 2d2(3l2(M + 3m) + b2(2M + 9m))) cos θ
+2b(M+ 3m) cos 2θ(b3−2d2b− l(d2−2b2) sinα))+ 2l2b2(2(2l2+b2)(M+ 3m)
−d2(2M + 9m) + (4(l2 + b2)(M + 3m)− 3d2(M + 4m)) cos θ) sin 3α)β′
+ db(−4lb(M + 3m) cosα2 cos 2θ(b2 − d2 + lb sinα) + 4 cos θ(lb cosα2
+ d2 sinα)(d2M+ 2l2(M+ 3m)+ 2lb(M+ 3m) sinα)+ b(M+ 3m)(2l(d2+ 3b2)

+ 2(4d2 + 3l2)b sinα+ 6l cos 2α(b2 − d2 + lb sinα)))θ′)
+ d3(8lb cosα(2(b+ l sinα)(d2M + 2l2(M + 3m) + 2lb(M + 3m) sinα) sin θ

+ b(M + 3m)(l2 − 2d2 + 2b2 − l2 cos 2α+ 4lb sinα) sin 2θ)β′θ′
+4d(2lb cosα(d2M + 2l2(M + 3m) + 2lbθ′2(M + 3m) sinα) sin θ
+6d(g(M+ 2m)(−(d2+ l2+ lb sinα+ b cos θ(b+ l sinα)) sinβ− db cosβ sin θ)
+hm(−2(d2 cosφ1 sin(β − θ1)θ′21 + cosφ2(db cos(β − θ2) sin θ + (l2 + b2 cos θ
+ lb(1 + cos θ) sinα) sin(β − θ2))θ′22 − 2d2 cos(β − θ1) sinφ1θ′1φ′1
+ d2 cosφ1 sin(β − θ1)φ′21 ) + 4(sinβ(−db cos θ2 sin θ + (l2 + b2 cos θ
+ lb(1 + cos θ) sinα) sin θ2) + cosβ(cos θ2(l

2 + b2 cos θ + lb(1 + cos θ) sinα)

+ db sin θ sin θ2))θ
′
2φ
′
2 sinφ2− 2 cosφ2(db cos(β − θ2) sin θ+ (b cos θ(b+ l sinα)

+ l(l + b sinα)) sin(β − θ2))φ′22 ))))),

RR3 = − 1

12d8
lb cosα(6d6g(M + 2m)(d cos θ sinβ + cosβ(b+ l sinα) sin θ)

+ lb cosα(−2(8d2l4(M + 3m)− d6M − 6d4l2(M + 3m)
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+8l2b2(l2 + b2)(M + 3m) + 2lb(M + 3m)((2d2 − 5d4 + 8l2b2(5l2 + b2)) sinα
+4lb cos 2α(l2 + b2 − 2d2 + 2lb sinα))) sin θ − (M + 3m)(2d6 + 5d2l2b2
+8l2b2(l2 + b2)− 2d4(2l2 + b2) + lb(4(−4d4 + 4l2b2 + 3d2(l2 + b2)) sinα
+ lb cos 2α(−19d2 + 8(l2 + b2) + 16lb sinα))) sin 2θ)α′2
+ d2lα′(4d cos θ(2(d− l)l(d+ l)b(M + 3m) cos 2α− (d4M + 2d2l2(M + 3m)
+ l2b2(M + 3m)) sinα− l2b(M + 3m)(2l + b sin 3α))β′ + b(M + 3m)
× cos 2θ(−4dl cosα2(b2 − d2 + lb sinα)β′ + 4(lb(l2 − 2d2 + b2) cos 2α
+(l2b2 − d4 + d2(l2 + b2)) sinα+ lb(l2 + b2 + lb sin 3α))θ′)
+ b(M + 3m)(−d(2l(d2 + 3b2) + 2(4d2 + 3l2)b sinα+ 6l cos 2α(b2 − d2
+ lb(l2 − d2 + b2) cos 2α− (d2 + l2)(d2 + b2) sinα− lb(d2 + l2 + b2
+ lb sin 3α))θ′)) + d4(l cosα(2(b+ l sinα)(d2M + 2l2(M + 3m)
+ 2lb(M + 3m) sinα) sin θ + b(M + 3m)(l2 − 2d2 + 2b2 − l2 cos 2α
+4lb sinα) sin 2θ)β′2 + 2lb(M + 3m)θ′2 cosα(l2 − d2 + b2 + 2lb sinα) sin 2θ
+12d2hmφ′2 sinφ2(2(−d cos θ cos(β − θ2) + (b+ l sinα) sin θ sin(β − θ2))θ′2
− l cosα sin θφ′2) + 3d2hm cosφ2(4 cos(β − θ2)(b+ l sinα) sin θ
+4d cos θ sin(β − θ2))(θ′22 + φ′22 ))),

RR4 = −hm(l(− cosφ1 sinα+ cosα cos(β − θ1) sinφ1)α′2
−2l sinα sin(β − θ1) sinφ1α′β′ + sinφ1(g cos θ1 + l cosα cos(β − θ1)β′2
+h cosφ1θ

′2
1 )),

RR5 = hm cosφ1
(−g sin θ1 + lα′2 cosα sin (β − θ1) + 2lα′β′ cos (β − θ1) sinα

+l cosα sin (β − θ1)β′2 + 2hθ′1φ′1 sinφ1
)
,

RR6 = − 1
d6
hm(−l(8l3b3 cosα4 cos θ cosφ2 + d2 cosφ2 sinα(2b4 + d2(l − b)(l + b)

+ 2lb sinα(d2 − l2 + b2 + d2 cos θ − lb sinα))− 2lb cosα2 cosφ2(d4 − 2d2l2
+2b2(d2 + l2)− 4b4 + d4 cos θ + lb(−2lb cos 2α− (4(d2 − l2 + b2)
+ 5d2 cos θ) sinα)) + 12 cosα(2 cos(β − θ2)(l2(−d4 + (d2 + 4l2)b2)
+ b(b(−d4 + d2l2 + 4l2b2) cos θ + l2b cos 2α(−5d2 + 4l2 + (−5d2 + 4b2) cos θ)
+ 2l(−2d4 + 3d2l2 + l2b2 + (−2d4 + (3d2 + l2)b2) cos θ) sinα
+4l3b2 cos( θ2 )

2 sin 3α)) + db(2d4 − 3l2b2 − 3lb(lb cos 2α+ 2d2 sinα))
× sin θ sin(β − θ2)) sinφ2)α′2 − 2d2lα′((d2 sinα(db cos(β − θ2) sin θ
+(l2 + b2 cos θ + lb(1+ cos θ) sinα) sin(β − θ2))+ lb cosα2(db cos(β − θ2) sin θ
+(2l2 − d2 − (d2 − 2b2) cos θ + 2lb(1 + cos θ) sinα) sin(β − θ2)))β′ sinφ2
+ b(l cosφ2(2lb cosα

3 + d2 sin 2α) sin θ + (cos(β − θ2)(d2 sinα(b+ l sinα)
+ l cosα2(2b2 − d2 + 2lb sinα)) sin θ + d cos θ(lb cosα2 + d2 sinα)
× sin(β − θ2)) sinφ2)θ′) + d4(l cosα(sinβ(−db cos θ2 sin θ + (l2 + b2 cos θ
+ lb(1 + cos θ) sinα) sin θ2) + cosβ(cos θ2(l

2 + b2 cos θ + lb(1 + cos θ) sinα)

+ db sin θ sin θ2))β
′2 sinφ2 + 2lb cosα(d cos θ cos(β − θ2)− (b+ l sinα)

× sin θ sin(β − θ2))β′θ′ sinφ2 + lb cosα(l cosα cos θ cosφ2
+(cos θ cos(β − θ2)(b+ l sinα)− d sin θ sin(β − θ2))θ′2 sinφ2)
+d2 sinφ2(g cos θ2 + h cosφ2θ

′2
2 ))),



648 The European Physical Journal Special Topics

RR7 = − 1
d6
hm cosφ2(l(d

2lb(−2d2 + 3l2 + (3b2 − 2d2) cos θ) sin 2α sin(β − θ2)
+ l2b2 cosα3(3db cos(β − θ2) sin θ − 4(d2 − 2l2 + (d2 − 2b2) cos θ
− 2lb(1 + cos θ) sinα) sin(β − θ2)) + d2 cosα(−db cos(β − θ2)
×(d2 − 3lb sinα) sin θ − (l2(d2 − 3b2) + b2(d2 cos θ + 3l2(cos 2α
−2 cos θ sinα2))) sin(β − θ2)))α′2 + d2lα′(−l cos(β − θ2)(2b cos 2α(l2 − d2
+ lb sinα) + 2l(lb+ (d2 + b2) sinα))β′ + b cos θ cos(β − θ2)(−(2b(lb
+(d2 + l2) sinα)+ 2l cos 2α(b2 − d2 + lb sinα))β′ − 2d(lb cosα2 + d2 sinα)θ′)
+ b sin θ sin(β − θ2)(2(dlb cosα2 + d3 sinα)β′ + (2b(lb+ (d2 + l2) sinα)
+ 2l cos 2α(−d2 + b2 + lb sinα))θ′)) + d4(d2g sin θ2 + l cosα(−l(l + b sinα)
× sin(β − θ2)β′2 − b cos(β − θ2) sin θ(dβ′2 + 2(b+ l sinα)β′θ′ + dθ′2)
−b cos θ sin(β − θ2)((b+ l sinα)β′2 + 2dβ′θ′ + (b+ l sinα)θ′2))
−2d2h sinφ2θ′2φ′2)).
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Abstract. The dynamics of co- and counter-rotating coupled spherical
pendula (two lower pendula are mounted at the end of the upper pen-
dulum) is considered. Linear mode analysis shows the existence of three
rotating modes. The linear modes allow us to understand the nonlinear
normal modes, which are visualized in frequency-energy plots. With the
increase of energy in one mode we observe a symmetry breaking pitch-
fork bifurcation. In the second part of the paper we consider energy
transfer between pendula having different energies. The results for co-
rotating (all pendula rotate in the same direction) and counter-rotating
motion (one of lower pendula rotates in the opposite direction) are pre-
sented. In general, the energy fluctuations in counter-rotating pendula
are found to be higher than in the co-rotating case.

1 Introduction

Coupled oscillators can exhibit complex phenomena such as: energy flows, synchro-
nization, beating, internal resonances, amplitude death, chaotic and quasiperiodic
transients etc. [1–8]. There are numerous studies on the dynamics of the pendulum,
single or coupled, but mostly devoted to in-plane oscillations [9–11]. In our studies
we investigate the behavior of the coupled spherical pendula. The first description of
spherical pendulum dynamics has been presented by Olssen [12,13], who derived the
equations of motion and solved them analytically using Lindstedt-Poincare method.
The obtained solution shows periodic rotation of pendulum for small but finite dis-
placements. The spherical pendulum is often taken as a model in quantum mechanics,
for example in Refs. [14,15] where the authors consider a Hamiltonian system showing
its asymptotic properties. In Ref. [16] the spherical pendulum is taken as an example
to show different ways of solving Hamiltonian system with holonomic constrains. The
authors show that the Penalty Method can compete with the Lagrange Multiplier
Method and the choice of the method depends on the complexity of the problem and
its expected accuracy. The dynamics of spherical pendulum for increasing value of
energy is presented in Ref. [17] where the authors consider several energy levels and

a e-mail: przemyslaw.perlikowski@p.lodz.pl

http://www.epj.org/
http://dx.doi.org/10.1140/epjst/e2014-02136-8


708 The European Physical Journal Special Topics

present, using analytical and numerical tools, general scenarios of bifurcations. The
global nonlinear stable manifolds of the spherical pendulum hyperbolic equilibrium
with closed loop attitude control are analyzed by Lee et al. [18]. Their investigations
have led us to understand the global stabilization properties of closed loop control
systems on nonlinear spaces. The consequence of symmetry breaking including PT-
transition is shown in Ref. [19]. The spherical pendulum is also used to model an arm
carrying a cup of coffee [20].
The dynamics of double pendulum has been considered in Ref. [21] where the

author used the model consisting of two rigid rods with elastic joints with the force
acting parallel to lower pendulum. The detailed stability analysis based on the center
manifold theorem has been considered for hanging down position. Here, the period
motion under the varying external force and damping coefficient have been studied.
In another work [22] the general theory of Lagrangian reduction is applied to the
equations of motion to simplify the problem where the main form of vibrations and
its bifurcations are observed. The symmetric properties of spherical pendulum motion
are investigated in details by Chossat and Bou-Rabee [23]. When the symmetry is
present in the system one can observe a symmetric quasiperiodic and chaotic motions
separated by heteroclinic connections. The reduction of cyclic symmetries or symme-
try breakdown leads to an immediate change of motion. The analytical investigation
including the analysis of double spherical pendulum topology was conducted by Hu
et al. [24]. Their work has led us to understand the geometric as well as the dynamical
properties of the systems.
In this paper we analyze the rotational motion of three coupled spherical pendula.

Using the linear approximation theory we obtain three independent linear modes of
the pendulum’s rotation. In each mode the pendula rotate in clock-wise direction with
different phase shifts and different amplitudes. Based on these linear mode solutions
we estimate nonlinear normal modes [25–27] using path-following algorithm. With
the increase of total energy of the system the frequencies of the modes also increase.
However, for higher energy level, the symmetry breaking pitchfork bifurcation occurs
in first mode. For periodic solutions there is no transfer of energy between the pendula.
The energy flows among the pendula for the co-rotating and counter-rotating rotations
are discussed. In general, the energy fluctuation in counter-rotating pendula are found
to be higher than in co-rotating case.
The paper is organized as follows. The considered model of the coupled spherical

pendulum is introduced in Sect. 2. Section 3 contains the derivation of the eigenfre-
quencies and eigenvectors of the linearized systems. We use path-following algorithm
to obtain linear solution for increasing energy of the system. The discussion on non-
linear normal modes is presented in Sect. 4. The energy flows between the pendula
are discussed in Sect. 5. The conclusions of the results are summarized in Sect. 6.

2 Model of two coupled spherical pendula

We consider the system composed of an upper and two lower spherical pendula as
shown schematically in Fig. 1. The upper pendulum with mass M is suspended on
weightless and inextensible strings of length L. At the end of the upper pendulum two
identical pendula are suspended, each of length H and mass m. The motion of upper
pendulum is described by two angles ϕ and θ as shown in Fig. 1, where ϕ is the angle
between the string L and the plane Y Z, while angle θ represents the angular position
of the pendulum around axis X. Motions of the first and the second lower pendulum
are described in the same manner by variables ϕ1 & θ1 and ϕ2 & θ2 respectively. This
system is Hamiltonian as there is neither external force nor dissipation of energy due
to any type of frictional force.
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Fig. 1. Schematic figure for the coupled pendulum.

In Cartesian coordinates the upper pendulum can be written using transformation:
x0 = L sinϕ, y0 = L sin θ cosϕ and z0 = −L cos θ cosϕ. Similarly, for each pendulum
the coordinates can be written as follows: xi = H sinϕi+x0, yi = H sin θi cosϕi+ y0
and zi = −H cos θi cosϕi + z0, where i = 1, 2. The kinetic energy is composed of
the energy of the upper pendulum and the energy of two lower pendula. For upper
pendulum this energy is given by:

TM =
1

2
M(ẋ20 + ẏ

2
0 + ż

2
0) =

1

2
L2M

(
cos2 ϕθ̇2 + ϕ̇2

)
,

while the kinetic energy of the i− th lower pendulum can be expressed as:

Tmi =
1

2
m(ẋ2i + ẏ

2
i + ż

2
i )

=
1

2
m

(
L2 cos2 ϕθ̇2 +H2 cos2 ϕiθ̇

2
i − 2HL cosϕi sin[θ − θi] sinϕθ̇iϕ̇+ L2ϕ̇2

+2HL
(
cosϕ cosϕi + cos[θ − θi] sinϕ sinϕi

)
ϕ̇ϕ̇i +H

2ϕ̇2i

+2HL cosϕθ̇
(
cos[θ − θi] cosϕiθ̇i + sin[θ − θi] sinϕiϕ̇i

))
,

where i = 1, 2. Potential energy of the system is

V = g
(
L(2m+M)(1− cos θ cosϕ) +Hm(2− cos θ1 cosϕ1 − cos θ2 cosϕ2)

)
.

The total energy of the system (Hamiltonian) H is equal to the sum of kinetic and
potential energies of three considered pendula. Based on Lagrange equation of the
second type one can derive six coupled second order ODEs. The equations of motion
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of the upper pendulum are

L cosϕ
(
gM sin θ − 2LM sinϕθ̇ϕ̇+ LM cosϕθ̈ +m

2∑
i=1

(
g sin θ +H cosϕi

× sin[θ − θi]θ̇2i − 2L sinϕθ̇ϕ̇− 2H cos[θ − θi] sinϕiθ̇iϕ̇i +H cosϕi sin[θ − θi]ϕ̇2i
+L cosϕθ̈ +H cos[θ − θi] cosϕiθ̈i +H sin[θ − θi] sinϕiϕ̈i

)
= 0, (1)

and

L
(
gM cos θ sinϕ+ LM cosϕ sinϕθ̇2 + LMϕ̈+m

2∑
i=1

(
g cos θ sinϕ+ L cosϕ sinϕθ̇2

+H cos[θ − θi] cosϕi sinϕϕ̇2i −H cosϕ sinϕiϕ̇2i +H cos[θ − θi] cosϕi sinϕθ̇2i
+Hϕ̈i(cosϕ cosϕi + cos[θ − θi] sinϕ sinϕi) + 2H sin[θ − θi] sinϕ sinϕiθ̇iϕ̇i
−H sin[θ − θi] cosϕi sinϕθ̈i +H cos θ cosϕi sin θi sinϕθ̈i + Lϕ̈

)
= 0. (2)

The dynamics of the i − th lower pendulum is also described by two second order
ODEs:

Hm cosϕi

(
g sin θi − 2H sinϕiθ̇iϕ̇i+H cosϕiθ̈i − L

(
cosϕ sin[θ − θi]θ̇2+ 2 cos[θ − θi]

× sinϕθ̇ϕ̇+ cosϕ( sin[θ − θi]ϕ̇2 − cos[θ − θi]θ̈
)
+ sin[θ − θi] sinϕϕ̈

))
= 0, (3)

and

Hm
(
g cos θi sinϕi + L cos[θ − θi] cosϕ sinϕiθ̇2 +H cosϕi sinϕiθ̇2i − 2L sin[θ − θi]
× sinϕ sinϕiθ̇ϕ̇+ L

(
(− cosϕi sinϕ+ cos[θ − θi] cosϕ sinϕi)ϕ̇2 + cosϕ sin[θ − θi]

× sinϕiθ̈ + (cosϕ cosϕi + cos[θ − θi] sinϕ sinϕi)ϕ̈
)
+Hϕ̈i

)
= 0, (4)

where i = 1, 2. These Eqs. (1)–(4) contains the full dynamics of the complete system,
Fig. 1.

3 Nonlinear normal modes of the system

3.1 Eigenfrequencies

For a given level of energy (a set of initial conditions) three modes corresponding to the
periodic solution of single spherical pendulum can be observed. Here, two rotational
modes (symmetric) and one planar mode (where the pendulum swings in a vertical
plane) are possible. In this paper we consider only rotational modes. For three coupled
pendula and for low values of energy (in linear approximation) three rotational modes,
each with own eigenfrequency, appear. To calculate these eigenfrequencies we apply
the theory of linear normal modes. Let us assume that the amplitudes of motion
of pendula are small, hence we can consider that the system performs harmonic
oscillations. To linearize the systems we use the following approximations: sinq = q
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and cosq = 1, where q = [ϕ, θ, ϕ1, θ1, ϕ2, θ2]
T
. For simplicity we can present the

equations of motions, after linearization, in a matrix form:

Aq̈+Cq = 0, (5)

where A and C are matrices of inertia and stiffness respectively, and they have got
the following forms

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L2(2m+M) 0 HLm 0 HLm 0

0 L2(2m+M) 0 HLm 0 HLm

HLm 0 H2m 0 0 0

0 HLm 0 H2m 0 0

HLm 0 0 0 H2m 0

0 HLm 0 0 0 H2m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gL(2m+M) 0 0 0 0 0

0 gL(2m+M) 0 0 0 0

0 0 gHm 0 0 0

0 0 0 gHm 0 0

0 0 0 0 gHm 0

0 0 0 0 0 gHm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

For rotational modes, in three dimensional phase space, the periodic solutions are ro-
tational ones around hanging down positions. For that reason we assume the solution
of Eq. (5) as follows:

q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ

θ

ϕ1

θ1

ϕ2

θ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψϕ sin[ωt]

Ψθ cos[ωt]

Ψϕ1 sin[ωt]

Ψθ1 cos[ωt]

Ψϕ2 sin[ωt]

Ψθ2 cos[ωt]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Ψ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin[ωt]

cos[ωt]

sin[ωt]

cos[ωt]

sin[ωt]

cos[ωt]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ω > 0, t > 0, ∀Ψj={1,2,3} ∈ R. (8)

For linear oscillations of the system we observe symmetry in two parallel planes (XY,
YZ), hence Ψϕ = Ψθ, Ψϕ1 = Ψθ1 , Ψϕ2 = Ψθ2 . One can calculate the eigenfrequencies,
ω, for which the periodic solutions are observed in the system, using the relation
(C − ω2A)Ψ = 0. Here the determinant det |C − ω2A| has to vanish, which gives
three independent frequencies

ω1 =

√
g

H
,

ω2,3 =

√
g

L

√
a± b, (9)

where a = (H+L)(2m+M)
2HM and b =

√
2m+M

√
2(H+L)2m+(H−L)2M
2HM ·
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Fig. 2. The schematic representation of modes for (a) ω = ω1 (b) ω = ω2 and (c) ω = ω3.

The schematic representation of motions corresponding to all three eigenfrequen-
cies are shown in Fig. 2. Frequency ω1 corresponds to the following solution: the
phase shift between lower pendula is π, which causes a balance of forces acting on
the upper pendulum, hence the upper pendulum is static (see Fig. 2a). For frequency
ω2 the upper and lower pendula rotate in-phase, lower pendula have the same ampli-
tudes while the amplitude of upper pendulum is different (Fig. 2b). For frequency ω3
the phase of upper pendulum is shifted by π compared to the phases of both lower
pendula (Fig. 2c).
The eigenvectors, corresponding the eigenfrequencies condition (C − ω2A)Ψ = 0,

can be written as

Ψ1 =
[
0, 0,Ψθ1 ,Ψθ1 ,−Ψθ1 ,−Ψθ1

]T
,

Ψ2,3 =
[
Ψθ,Ψθ,Ψθ(c∓ d),Ψθ(c∓ d),Ψθ(c∓ d),Ψθ(c∓ d)

]
, (10)

where c = (H−L)(2m+M)
4Hm and d =

√
2m+M

√
2(H+L)2m+(H−L)2M
4Hm ·

3.2 Nonlinear normal modes

First we obtain eigenvectors using linear approximation theory. Each of them de-
scribes the periodic solution but only for the linearized system. When we have ap-
plied one of them to the nonlinear system, even assuming small energy (H ≈0.02)
(Eqs. (1)–(4)) we obtain a quasiperiodic orbit (KAM tori) which is located close
to the periodic solution of the linearized system. To correct the obtained solution,
we have applied the Newton-Raphson algorithm. The integration of ODEs are per-
formed with Runge-Kutta-Fehlberg (4,5) method. In numerical calculations we as-
sume the following values of system parameters: M = 2, m = 2, L = 1, and H = 3.
After substituting these values in Eqs. (9) we obtain the following linear eigenfre-
quencies: ω1 = 1.732, ω2 = 1.553 and ω3 = 5.7959. In Fig. 3a we present, on the
frequency – energy plot, how the frequencies of three periodic solutions change with
the increase of the total energy H. Each branch is calculated in the following way:
for starting point (H ≈0.02) we take initial conditions according to linear eigenvec-
tor, then we correct the obtained solution by Newton-Raphson scheme to periodic
orbit. In next step this solution is perturbed (we add 1% of current total energy) so
the energy is shifted to higher level and once again the correction is applied. The
described procedure is repeated until the energy of the system reaches H = 300.
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Fig. 3. (a) Frequency–energy plot of the investigated nonlinear system. Each branch begins
with frequency calculated for linear system (No. 1 – ω1, No. 2 – ω2 and No. 3 – ω3). (b) The
maximum amplitudes of solutions as a function of energy for branches No. 1 and No. 1a. At
H ∼ 197 we observe a pitchfork bifurcation which breaks the symmetry in the system, and
hence the upper pendulum starts to oscillate (θ �= 0) and amplitudes of lower pendula (θ1
and θ2) have different values. (c) The normalized energies (‖H‖ = 1) for each pendulum as
a function of total energy of the system for branches No. 1 and No. 1a. The solid and dashed
lines correspond to respectively stable and unstable periodic solutions.

The successive increase of total energy H causes the increase of three frequencies,
hence the periods of rotations become shorter. The maximum value of energy can
be up to H = 300 because the system has singular point at π/2. Therefore for
branch No. 3 the maximum amplitude is close to π/2. Further increase of the energy
(H > 300) for branches No. 1, 1a and 2 causes only the increase of the amplitude and
the rotational velocity, but no new phenomena are observed.
Branch No. 1 corresponds to clock-wise rotations of lower pendula with phase

shifted by π while the upper one remains static (see Fig. 2a). However, with the
increase of total energy we observe the change in the shape of periodic solutions (see
Fig. 4) due to the presence of nonlinear terms in the equations of motion. For energy
level equal to H = 197 the symmetry breaking pitchfork bifurcation occurs. It is
indicated by the appearance of No. 1a branch. After the bifurcation the frequencies
of two solutions stay close in the whole range of considered energy. The changes of
the maximum amplitudes of solutions along branches No. 1 and 1a are shown in
Fig. 3b. The solid and dashed lines correspond respectively to stable and unstable
periodic solutions. It is easy to see that, for branch No. 1a, the oscillations of lower
pendula are asymmetric while the amplitude of the upper pendulum continuously
increases. The amount of energy in each pendulum for branches No. 1 and No. 1a is
presented in Fig. 3c. We normalize the total energy to one (‖H‖ = 1) and show its
participation in each pendulum. It is easy to see that for branch No. 1 the energy is
equally distributed between lower pendula. Since the upper pendulum is not moving
before the bifurcation, and hence its energy is equal to zero. For branch No. 1a the
energy of one lower pendulum starts to increase while the energy of the second one
decreases. The energy of the upper pendulum also increaes after the bifurcation.
The change of the shape of periodic orbits for branches No. 1 (black line) and

No. 1a (grey line) are shown in Fig. 4. In upper and lower rows, the trajectories
of upper pendulum and lower pendula are presented respectively. For branch No. 1
the low energies solutions are nearly harmonic however for higher values of H we



714 The European Physical Journal Special Topics

-1.0-0.5 0.0 0.5 1.0 -1.0-0.5 0.0 0.5 1.0

(h)

-15

-10

-5

0

5

10

15

-15

-10

-5

0

5

10

15

-15

-10

-5

0

5

10

15

-1.0-0.5 0.0 0.5 1.0-0.5 0 0.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5 (e) (f) (g)

-15

-10

-5

0

5

10

15

-15

-10

-5

0

5

10

15

-1.0-0.5 0.0 0.5 1.0 -1.0-0.5 0.0 0.5 1.0

(c) (d)

200 300

(b)

-1.0-0.5 0.0 0.5 1.0
-15

-10

-5

0

5

10

15
100

(a)

-0.5 0 0.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
010- 4

10- 4

.

. . ..

10- 4

10- 4

.
.
.

.

.
.
.

Fig. 4. The phase space trajectories of nonlinear normal modes along branches No. 1 and
No. 1a. The total energy H is increased from left to right: H = 0.02 (a, e), H =100 (b, f),
H = 200 (c, g) and H = 300 (d, h). The upper and lower rows show the motions of upper and
lower pendula respectively in phase space. The solid (stable solutions) and dashed (unstable
solutions) black lines show periodic orbits along branch No. 1 while grey lines present the
stable orbits along branch No. 1a.

observe the deformation around the maximum amplitude of pendula. Therefore, the
time when the pendula are barely moving becomes longer in comparison to the rest
period of oscillations. The periodic solution loses stability in pitchfork bifurcation (the
continuous line changes to the dashed one) and the symmetry broken orbits appear
(branch No. 1a).
For branch No. 2, corresponding to three pendula oscillating in-phase, we observe

a slow increase of oscillation amplitude with the increase of total energy. The peri-
odic solutions along branch No. 2 change their shapes similar to branch No. 1 (not
presented here). For the third branch (No. 3) the upper pendulum rotates in anti-
phase with lower pendula. The changes of periodic solutions shape are presented in
Fig. 5. It is easy to see that, for low energy level, the orbits are nearly harmonic,
while for higher levels of energy they become non-harmonic with visible nonlinear
effects around the maximum amplitude. For H = 300 the maximum amplitude of
upper pendulum reaches the singular point θ = π/2 (see 5a) therefore the motion for
higher energy is impossible. In the case of branches No. 1 and No. 2 the amplitudes
of lower pendula grow much faster than the amplitude of the upper one, while for
branch No. 3 we observe an opposite behavior.

4 Energy transfer among pendula

In this section we present energy transfer between lower pendula via the upper pen-
dulum. In the case of periodic solutions there is no energy transfer, i.e., the energy
of each pendulum is constant. To observe the exchange of energy between the pen-
dula one has to perturb the periodic motion. This is done by introducing a small
mismatch in the initial conditions. For lower energy the periodic state leads to quasi-
periodic motion (KAM tori) while for larger perturbations one can also observe chaotic
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Fig. 5. The projections of trajectories in phase space of nonlinear normal modes of branch
No. 3 for different energies: H = 0.02, H = 100, H = 200 and H = 300 of (a) upper and (b)
lower pendula.

behavior. Additionally, in this section we take into account counter-rotating solutions
as well. To achieve these we change the sign of the initial velocities (ϕ̇2 and θ̇2) of
one of lower pendula i.e. forcing one pendulum to move in the opposite direction. As
discussed below, we observe that all counter-rotating solutions are chaotic.

4.1 Perturbation to first mode, ω1

For low level of total energy (H = 0.017035) we take the following initial conditions:
θ = 0.0, ϕ = 0.0, θ1 = 0.012656702, ϕ1 = 0.0, θ2 = −0.012656702, ϕ2 = 0.0, θ̇ = 0.0,
ϕ̇ = 0.0, θ̇1 = 0.0, ϕ̇1 = 0.02192759, θ̇2 = 0.0, ϕ̇2 = −0.02192759, which corre-
spond to 1% perturbation of periodic solution. For counter-rotating the velocity of
the second lower pendulum is equal to ϕ̇2 = 0.02192759 (the velocity θ̇2 is equal to
zero). In Fig. 6a,e,i we present how the energies of upper and lower pendula change
in time for co-rotating (black line) and counter-rotating (grey line) without addi-
tional perturbation. For co-rotating motion the pendula do not transfer the energy
between each other because of static upper pendulum, and synchronized periodic mo-
tions of lower pendula. For counter-rotating motion the lower pendula transfer energy
via upper pendulum and motions are chaotic. For higher energy, after addition of
small perturbation, i.e., δθ1 = 0.01θ1 and δϕ̇1 = 0.01ϕ̇1 trajectories are shown in
Fig. 6b,f,j. At this energy level the upper pendulum sets in motion independently
from lower pendula. In both cases, either co- or counter, lower pendula exchange en-
ergy via the upper pendulum. The co-rotating solution does not remain periodic but
it becomes quasiperiodic. For this level of perturbation the independent frequency is
much smaller than the frequency of original periodic orbit, hence we observe a slow
transfer of energy. However the counter-rotating motion remains chaotic. Note that
the energy is transferred with the same frequency but the amplitude of upper pendu-
lum’s motion is much higher for counter-rotating than for co-rotating.
Shown in Fig. 6c,g,k are the trajectories for further high energy level,

(H = 101.468) with the following initial conditions: θ = 0.0, ϕ = 0.0, θ1 = 0.92996374,
ϕ1 = 0.0, θ2 = −0.92996374, ϕ2 = 0.0, θ̇ = 0.0, ϕ̇ = 0.0, θ̇1 = 0.0, ϕ̇1 = 1.79562871,
θ̇2 = 0.0, ϕ̇2 = −1.79562871. For counter-rotating case initial velocity of second pen-
dulum is changed to ϕ̇2 = 1.79562871. The system behaves in similar way as in the
low energy level cases. The only difference is in the amplitude of motion. However,
for sufficiently high energy level, at (H =????), as shown in Fig. 6d,h,l, we observe
higher energy transfer between pendula for co-rotating case.
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Fig. 6. The variation of energies as a function of time for the first mode, ω1. The figures of
upper row (a–d) correspond to the upper pendulum while the lower two rows (e–l) are for
lower pendula. The black and grey lines in each figure represent co- and counter rotating
solutions respectively. The trajectories for (a,e,i) low energy level with identical initial con-
ditions, (b,f,j) low energy level with mismatched initial conditions, (c,g,k) high energy level
(H = 100) with identical initial conditions, and (d,h,l) high energy level (H = 100) with
mismatched initial conditions.

4.2 Perturbation to second mode, ω2

For low energy level (H = 0.0778345) the following initial conditions are taken:
θ = 0.01745387, ϕ = 0.0, θ1 = 0.02384009, ϕ1 = 0.0, θ2 = 0.02384009, ϕ2 = 0.0,
θ̇ = 0.0, ϕ̇ = 0.02710668, θ̇1 = 0.0, ϕ̇1 = 0.03702315, θ̇2 = 0.0, ϕ̇2 = 0.03702315.
For counter-rotating the initial velocity of second pendulum ϕ̇2 = −0.03702315 (the
velocity θ̇2 is equal to zero) is considered. In Fig. 7a,e,i we show the change of ener-
gies as a function of time for periodic motion for co-rotating and chaotic oscillations
for counter-rotating. For co-rotating case the pendula do not transfer the energy be-
tween each other. The upper pendulum is moving in-phase with lower pendula. When
counter-rotating motion is observed lower pendula transfer energy to upper pendulum
and vice verse. The fluctuation in energy indicates that motions are chaotic.
Next we add the following perturbation to initial conditions: δθ1 = 0.01θ1 and

δϕ̇1 = 0.01ϕ̇1. In Fig. 7b,f,j the change of energy in time for co-rotating and counter-
rotating motions are presented. In both these cases lower pendula exchange energy
via the upper one. Energy is transferred with the similar frequency but the amount
of the exchanged energy is much bigger for counter-rotating case than for co-rotating.
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Fig. 7. The variation of energies as a function of time for the second mode, ω2. The figures
of upper row (a–d) correspond to the upper pendulum while the lower two rows (e–l) are
for lower pendula. The black and grey lines in each figure represent co- and counter rotating
solutions respectively. The trajectories for (a,e,i) low energy level with identical initial con-
ditions, (b,f,j) low energy level with mismatched initial conditions, (c,g,k) high energy level
(H = 100.989) with identical initial conditions, and (d,h,l) high energy level (H = 100.989)
with mismatched initial conditions.

For higher energy level (H = 100.989) the following initial conditions are consid-
ered: θ = 0.66836221, ϕ = 0.0, θ1 = 0.817659, ϕ1 = 0.0, θ2 = 0.817659, ϕ2 = 0.0,
θ̇ = 0.0, ϕ̇ = 1.14578007, θ̇1 = 0.0, ϕ̇1 = 1.3488661, θ̇2 = 0.0, ϕ̇2 = 1.3488661. The
trajectories are shown (Fig. 7c,g,k). For counter-rotating case the initial velocity of the
second pendulum is changed to ϕ̇2 = −1.3488661. For higher energy counter-rotating
continues to shows chaotic motion (Fig. 7d,h,l). In the co-rotating case lower pendula
oscillate in quasiperiodic way. However, for higher energy level ((H = 100.989)), the
period of energy transfer is much shorter than for lower total energy level.

4.3 Perturbation to third mode, ω3

Now we consider the third mode where upper and lower pendula move in opposite
directions. For low energy level (H = 0.0208567) with the following initial conditions
θ = 0.017453269, ϕ = 0.0, θ1 = −0.0063880017, ϕ1 = 0.0, θ2 = −0.0063880017,
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Fig. 8. The variation of energies as a function of time for the third mode, ω3. The figures
of upper row (a–d) correspond to the upper pendulum while the lower two rows (e–l) are
for lower pendula. The black and grey lines in each figure represent co- and counter rotating
solutions respectively. The trajectories for (a,e,i) low energy level with identical initial con-
ditions, (b,f,j) low energy level with mismatched initial conditions, (c,g,k) high energy level
(H = 100.898) with identical initial conditions, and (d,h,l) high energy level (H = 100.898)
with mismatched initial conditions.

ϕ2 = 0.0, θ̇ = 0.0, ϕ̇ = 0.10115284, θ̇1 = 0.0, ϕ̇1 = −0.037024141, θ̇2 = 0.0,
ϕ̇2 = −0.037024141 are taken. For counter-rotating we assume ϕ̇2 = 0.037024141
(Fig. 8a,e,i) Co-rotating solution is periodic and pendula do not exchange energy
between each other. In counter-rotating case we can observe chaotic beating. Similar
behavior is observed for higher energy level (H = 100.898) as shown in Fig. 8b,f,g. and
δϕ̇1 = 0.01ϕ̇1. The energy transfer is more for counter-rotating than for co-rotating.
At high energy level (H = 100.898) with initial conditions: θ = 1.16073984,

ϕ = 0.0, θ1 = −0.32498693, ϕ1 = 0.0, θ2 = −0.32498693, ϕ2 = 0.0, θ̇ = 0.0,
ϕ̇ = 7.90726534, θ̇1 = 0.0, ϕ̇1 = −2.75298937, θ̇2 = 0.0, ϕ̇2 = −2.75298937
(Fig. 8c,g,k). For counter-rotating case, the initial velocity of second pendulum is
changed to ϕ̇2 = 2.75298937. In these both cases, co- and counter-rotating oscilla-
tions of pendula are chaotic for higher total energy level (Fig. 8d,h,l).
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5 Summary

In this paper we study the dynamics of three coupled conservative spherical pendula.
The analytical calculations of the eigenfrequencies of the linearized system, allow us
to identify three independent linear modes of the pendulum’s rotation. For all of
them, pendula rotate in clock-wise direction with different phase shifts. The obtained
linear modes allow us to compute the nonlinear normal modes for increasing energy
in the system using the path-following method. As it is expected with growing total
energy the frequencies of modes increase. In the first mode we observe a pitchfork
bifurcation, which causes the appearance of symmetry broken periodic solution and
destabilization of the initial one.
In the case of periodic motion there is no energy transfer between the pendula,

but even a small perturbation of periodic initial conditions leads to the exchange of
energy. We show the energy flows for each mode considering two cases of rotations –
in clock-wise and counter clock-wise directions. In the first case for all three modes we
observe the dynamics on a KAM tori. The period of energy transfer is much longer
than the natural period of each mode. In the second case the dynamics is always
chaotic.

This work has been supported by the Foundation for Polish Science, Team Programme under
project TEAM/2010/5/5 (BW, PP, TK). AP would like to thank the DST, Govt. of India
for financial support.
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