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Abstract

This PhD thesis is devoted to analysis of synchronous states which exist in a system consists of
horizontally moving beam with n self-excited double pendula suspended to it. The results obtained
during four years of study have been published in three articles in journals form JCR list. The main
difference in analysis is in forcing of pendula. In the first and the second paper the pendula are exited
by van der Pol’s type of damping, while in the third one by clock’s escapement mechanism. Those
papers create a series which give an overview of dynamics of the considered system.

In the first article “Synchronization of two self-excited double pendula” the analysed model is
consists of beam with two suspended double pendula. The excitation is provided by the van der
Pol‘s type of damping and is placed in the pivot of upper pendula, hence the system is described
by a continuous ordinary differential equations. For assumed model, with two double pendula, four
synchronous states exist, i.e, all pendula in phase, all in anti-phase and two mixed solutions (upper
pendula in phase and lower in anti-phase and vice verse). The numerical calculations are performed
using continuation toolbox AutoO7p. The path-following allows to analyse, in detail, the existence,
stability and bifurcations along branches of period solutions. The starting points of path-following are
periodic solutions obtained for identical pendula. Bifurcations parameters are as follow: the masses
of pendula and beam and their influence on system’s dynamics is investigated. Finally, the ranges of
stability of synchronous states in two parameters’ space are calculated.

The second paper “Dynamics of n coupled double pendula suspended to the moving beam” extents
analysis showed in the previous article. The model consists of n double pendula coupled via the
beam. The main aim is to compute a number of synchronous states for arbitrary number of double
pendula. The analytical condition which enables calculation of exiting synchronous states is derived
using energy balance method. Because of its trigonometric form the solutions can be obtained only
numerically for limited number of coupled systems. The detail investigations are performed for the
system consists of 3,4 and 5 double pendula. In considered systems pendula synchronize in clusters.
In each cluster the number of pendula is a prime number. Based on Goldbach’s conjectures, which
showed that any number can be expressed as prime number, one can obtain the synchronous states
for any number of coupled systems. At the end of our paper the stability of synchronous states is
discussed.

In the last article “Synchronization configurations of two coupled double pendula” the analysed
model consists of beam with two suspended double pendula. The excitation is provided by the clock
escapement mechanism which is placed between lower and upper pendula. Contrary to the previous

model, equations governed system’s dynamics are discontinuous ordinary differential equations. The



analytical investigations are performed using energy balance method. In the system with clock es-
capement, mechanism, as well as for model with the van der Pol’s type of damping, four synchronous
states are identified. The numerical calculations performed for identical pendula confirm the existence
of synchronous states. Bifurcation diagrams are computed for stable periodic solutions and show their
stability as a function of system’s parameters. Finally, the influence of mismatch in system’s para-
meters is investigated. The dynamics of considered system is comparable, to system with the van der

Pol’s type of damping and both excitation terms can be treated as interchangeable.



Appended papers

Paper 1 P. Koluda, P. Perlikowski, K. Czolczynski, and T. Kapitaniak. Synchronization of two self-
excited double pendula. European Physical Journal: Special Topics, 223(4):613629, 2014.

We consider the synchronization of two self-excited by van der Pol’s type of damping double
pendula. We show that such pendula hanging on the same beam can have four different synchronous
configurations. OQur approximate analytical analysis allows us to derive the synchronization conditions
and explain the observed types of synchronization. We consider an energy balance in the system and
describe how the energy is transferred between the pendula via the oscillating beam, allowing thus
the pendula synchronization. Changes and stability ranges of the obtained solutions with increasing

and decreasing masses of the pendula are shown using path-following.

Paper 2 P. Koluda, P. Brzeski, and P. Perlikowski. Dynamics of n coupled double pendula suspended
to the moving beam. International Journal of Structural Stability and Dynamics, 14(8):1440028, 2014.

We consider the synchronization of n self-excited by van der Pol’s type of damping double pendula.
For such pendula hanging on the same beam, different synchronous configurations can be obtained (in-
phase and anti-phase states). An approximate analytical analysis allows to derive the synchronization
condition and explain the observed types of synchronization for any number of coupled double pendula.
The energy balance method is used to show how the energy between the pendula is transferred via
the oscillating beam allowing their synchronization. We compute periodic solutions for n = 2, 3, 4,
5 coupled double pendula, based on analytical predictions. For all obtained periodic solutions, we

investigate how the stability properties change with the varying natural frequency of the beam.

Paper 3 P. Koluda, P. Perlikowski, K. Czolczynski, and T. Kapitaniak. Synchronization configura-
tions of two coupled double pendula. Communications in Nonlinear Science and Numerical Simulation,
19(4):977990, 2014.

We consider the synchronization of two self-excited by clock’s escapement mechanism double pen-
dula hanging from a horizontal beam which can roll on the parallel surface. We show that such pendula
can obtain four different robust synchronous configurations. Qur approximate analytical analysis al-
lows to derive the synchronization conditions and explains the observed types of synchronizations.
We consider the energy balance in the system and show how the energy is transferred between the

pendula via the oscillating beam allowing the pendula’ synchronization.
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1 Introduction

The synchronization phenomena was written up in XVII-th century by the Dutch scientist Christian
Huygens [1]. When he was sick, he observed that two pendulum clocks hanged on the same wall can
synchronize their motions in anti-phase. Recently, a large progress in understanding of this phenomena
has been made and synchronizability of two and more single pendula is well understood [2, 3, 4, 5, 6,
7,8, 9]

This PhD thesis is devoted to description of dynamics of double pendula coupled via the beam.
The double pendulum can be considered as a full model of mechanical clock because the additional
pendulum corresponds to the motion of clock’s case. The first investigations on dynamics of the double
pendulum can be found in the paper by Rott [10], where an analytical investigation of the Hamiltonian
system is presented for different ratios between natural frequencies of the pendula. The next results
obtained by Miles [11] describe dynamics of double pendulum under parametric excitation around the
2 : 1 resonance. A mode interaction in the double pendulum, including a detailed bifurcation analysis
near two multiple bifurcation points and a transition to quasi-periodic motion and chaos around the
2 : 1 parametric resonance, are presented in Refs. [12, 13, 5|. Similarly as for 2 : 1, the 1 : 1 resonance
leads to dynamics that include multiple bifurcation points, symmetry breaking points and cascades
of period doubling bifurcations [5]. In Strzalko et. al. [14] the rotations of the set of two pairs of
double pendula mounted on the platform which oscillates vertically is investigated experimentally
and numerically. The rotating pendula can be 1 : 1 and 1 : 2 synchronized with the oscillations of
the platform. Those states are extremely sensitive to perturbation (fifteen possible configurations are
described). Double pendula can be also considered as an example of many physical systems commonly
met in engineering, e.g., a model of bridge-pedestrian interactions [15], golf or hockey swing interactions
with arms [16], human body [17] or trunk [18] models. Generally speaking, such systems are globally
coupled multidimensional networks, so one can expect a coexistence of multiple attractors of different
types (periodic, quasiperiodic and chaotic), see Refs. [2, 9, 19, 20].

As aforementioned, in the literature there are numerous analytical description of double pendulum
motion under parametric excitation. Nevertheless, there is lack of studies of interaction between two
or more coupled systems. In this PhD thesis two models of double pendula system are taken under
consideration, both of them are self-excited. In the first model the double pendula are excited by van

der Pol’s type of damping [21, 22] and in the second one by clock escapement mechanism [23].
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2 The Doctoral Thesis and Main Objective

Thesis:

The proper selection of parameters of coupled double pendulums increase their synchronizability.

Main Objective:

The main objective of the thesis is description of synchronizability of double pendulums hanged on
the beam. For identical pendulums the synchronous states will be identified with an analytical
method. The stability of obtained synchronous states will be calculated numerically using
path-following. Then, investigations of synchronous states will be extended for pendulums with
non-identical masses. All obtained results will be summed up in a catalogue which presents the

possible periodic solutions of coupled double pendulums.

3 Thesis Organization

The PhD thesis is organized as follow. The description of analysed models is shown in Section 4.
In Section 4.1 the overview of dynamics of system with van der Pol’s type of damping is given. The
systems consist of 2, 3, 4, 5 and arbitrary number of coupled double pendula are considered. Section 4.2
contains the description of the model with clock escapement mechanism and presents the interactions
between two coupled double pendula. The brief conclusion of obtained results is given in Section 5. In
Section 6 three published papers are presented. Section 7 contains the doctoral thesis, main objective

and summary in polish.
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4 Analyzed Models

4.1 System with the van der Pol’s type of damping.

The analysed system is shown in Fig. 1. It consists of a rigid beam and two double pendula suspended
on it. The beam of the mass M can move along the horizontal direction, its movement is described

by the coordinate z;.The beam is connected to a linear spring and a linear damper, k, and c,.

g C, m

;j%

RN

LT

Fig. 1: The model of the analyzed systems.

Each double pendulum consists of two light beams of the length /;; and the masses m;; (i-th upper
pendulum) and the length /;5 and m;s (i-th lower pendulum), where ¢ = 1, 2, mounted at its ends.
We consider double pendula with the same lengths I;; = l;5 = [ but different masses m;; and m;s (to
maintain generality in the derivation of equations, we use indexes for lengths of the pendula). The
motion of each double pendulum is described by the angles ;1 (upper pendulum) and ;e (lower
pendulum). The upper pendula are self-excited by the van der Pol type of damping (not shown in
Fig. (1)) given by the momentum (torque) c,ap$1:(1 — pp?;), where c,q, and p are constant. Van der
Pol damping results in the generation of a stable limit cycle. The lower pendula are damped with a
viscous damper with the coefficient ¢;5. After introduction of dimensionless time 7 = tw, equations of

motion of the considered system are as follows:

Up + Z Ail('()z‘il cos b1 — 7 sin i1) + Z A (%2 cos thia — 17y sin Yi2)+ (1)

=1 =1
+Kyp + Cyp = 0
819 cos i1 + Lijnthin + Ligthiz cos(thin — iz) = (2)
—Listp% sin(Yi1 — ¥iz) — Gar sin(¥i1) — Cuoap(1 — pbi )i — Caz(Yiz — ¥in)
Si2ijb cos Wiz + Ligthi cos(Yi1 — i2) + Listhiz = (3)

Li3¢1'21 sin(vi1 — Yi2) — Gz sin(ii2) + Ciz (%2 — szl)
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Wherez:l""’n’y:lﬂ’y:lbiw’y:Q%’wZQD?w:%’w:%7M:M+Z?=1Zj=1mijaAi1:

(ma1+maz)lia o mislis _ _ _ (mar4mag)lin o maalis I (mi1+mi2)l2

M, , Aip = Mi, K= MW'M C =3 i1 = Ml , Oig = Mip Li = Ti2lpM
o misll L myolioli (ms1+mi2)ling mialiag __ _ Cudp o Cio

Lo = ionw Lis = 34,5 Ga = TiLom - G2 = 0wy Codr = Gy Ci2 = uhm

are dimensionless parameters.

As aforementioned pendula are identical, their oscillations have small amplitudes and perform
periodic motion. The motion of each pendulum is given by: v;; = ®;;sin(wer + B;;), where f;;
(i, j =1, 2) are phase differences between the pendula and wy is frequency of harmonic motion.

This assumptions let us find synchronization condition using analytical energy balance method.

Equations of the energy balance have following form:

WbDRIVE WDAMP 0 (4)
WSYN P WSYN =+ WDAMP 0 (6)

for ¢ = 1,...,n. The first component of Equation (4) represents the work performed by horizontal

components of the force with which the double pendula act on the beam causing its motion (W2EIVE)

and second component energy which is dissipated by the linear damper ¢, (WL2AMP) Equation (5)

describes energy balance of the upper pendulums. The first component represents the energy which
WEYN Py
1

is transferred to the beam ( , while the second one describes the energy which is transferred

to lower pendulum (WgYN). The third describes the energy which is supplied to the system by the

WSELF)

van der Pol’s type of damping ( and last one represents the energy which is dissipated

(WERAMPY 1y pendulum’s damping. The last equation (6) describes the energy balance in the lower

pendulums. The first component corresponds to the energy which is transferred to the upper pendulum

WSYN

( W5YN P). The second component represents energy which is transferred to the beam (W35Y%) via

upper pendulum. The last one describes energy which is dissipated by the viscous damper (W5A4MF).

When energies W5YN £ and W5YY Pvanish the synchronization between lower and upper pen-

dulums is observed. Such situation occurs when phase difference angels have following values:

Bir =Bz V (Bia =0 A Big = ).

As it is easy to see there are two modes of synchronization between lower and upper pendulums.
The first one is synchronization in phase, when both pendulums move in the same direction. The

second mode is anti-phase synchronization, this type of synchronization occurs when lower and upper
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pendulums are oscillating in opposite directions. In each equation of energy balance describing motion
of pendulums (5-6) are components represent the transfer of energy to the beam, directly or via the
upper pendula. Ona can say that pendula act with synchronization momentum on the beam (upper
pendula directly and lower pendula via upper ones). In synchronous state the work done by this
momentum during one period of motion is equal to zero, hence Wf;-YN =0@G=1,..,n,j=12).

This condition can be written in the following form:

n 2
Wi N = 6@ | DD 0iiMjsin(Bi; — Bu) | =0 k=1,..,n,1=1,2, (7)

i=1j=1

—UJTr

Where:f = m ,

Mil = (mil —l-mig)lil, Mi2 = miglig, ®ij = (I)ij(1+0.25q)%j), 7= 1, n,] = 17 2.
As it easy to see those equations give us trigonometrical relations between phase angles §;; and enable
to calculate all possible synchronous states. The derivation assumes that in synchronous state beam

is at rest. The only exception is the case where upper and lower pendula are synchronized in phase

(the upper and lower pendulum can be either in phase or in anti-phase to each other).

Synchronization of two double pendula

For system consists of two double pendula equations 7 have the following form:

O©12Miasin(f12 — B11) + O21 Moy sin(B21 — Bi1) + O Mas sin(Baz — f11

( ) ( ) (

©11 M1y sin(B11 — Bi2) + O21 Moy sin(fa1 — B12) + O22 Moz sin(Ba2 — P12
( ) ( ) (
( ) ( ) (

©11 M1 sin(B11 — B21) + O12 M2 sin(B12 — Ba1) + O Moo sin(Baz — [o1

0
0
0
O©11My1sin(B11 — B22) + ©O12 Mz sin(f12 — B22) + O21 Moy sin(B21 — Pa2) =0

)=
)
)
)=

Equations 8 are fulfilled for §;;, which are combinations of 0 and 7. Assuming that 11 = 0, one can
identify the following pendulum configurations which are presented in Fig. 2(a-d). The first type is the
configuration shown in Fig. 2(a). Both upper and lower pendula are phase synchronized, i.e., 111 = 19,

and Y12 = Va9 (B11 = Pi2 = P21 = Paz = 0 or B11 = P21 =0, f12 = P2z = 7). The upper and lower

pendula are respectively in phase and anti-phase synchronized i.e., ¥11 = 121 and 115 = —1)95 in the
configuration of Fig. 2(b) (811 = B12 = B21 = 0, Bag = 7 or B11 = B12 = P22 = 0, B21 = 7). Fig. 2(c)
presents the case when both upper and lower pendula are synchronized in anti-phase i.e., 911 = —21

and Y12 = —thaa (B11 = P12 =0, Ba1 = Paa = m or P11 = P2z = 0, B12 = P21 = 7). Finally in Fig. 2(d)

we present the case when upper pendula are in anti-phase and lower pendula in phase Y11 = —21
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and Y12 = P2 (511 =Pi12=Pa2 =0, B2 =mor B11 =0, B21 = Pi2 = Paz = 7T)-

(a) (b)
[ e\\\ - \] [ < /ﬁ |
() (d)
l ‘i\\ /? | l < %\l
Fig. 2. Synchronous states of system ((1)-(3)): (a) upper and lower pendula in phase: 811 = B21 =
B12 = Ba2; (b) upper pendula in phase, lower pendula in anti-phase: 311 = 321 = 0, and B2 =

B2 = 7; (c) upper and lower pendulums in anti-phase: 811 = S12 = 0 and Bo1 = B2o = 7; (d)
upper pendulums in anti-phase, lower pendulums in phase: 811 = 22 = 0 and (13 = P21 = 7.

Synchronization of system consists of 3, 4, 5 double pendula

In this section we show an analytical condition for synchronous solutions of n coupled double
pendula. The derivation of synchronization condition is shown in the Appendix A of Koluda et. al. [22].
To simplify form of this condition we assume that pendula have identical masses and lengths, i.e, m;; =
my2 and l;1 = Iz (for i = 1,...,n) and we use trigonometric identity: sin(a; — ae) = sinay cos ag —

cos a1 sin ag. For n coupled double pendula the synchronization condition has the following form:

cos ﬂn(Z:ZL sin 81 — sin B11) — sin Bll(zﬁj cos Bk1 —cosfB11) =0

cos ﬁgl(Z:Z? sin 81 — sin B21) — sin 621(222? cos Bk1 —cosf21) =0

cos Bnl(zllirf sin 81 — sin B,1) — sin ﬁm(ZﬁZL cos Br1 —cosfBn1) =0
fori=3,...,n.

The solutions f Eqs 9 for n = 3 double pendula are as follows: 517 =0 A B21 = 2% A B31 = %ﬂ or
B11 = P21 = B31. Hence, four different configurations are presented in Fig. 3 (in each state pendula
in double pendulum can either in phase or anti-phase synchronization) For n = 4 we also observe
four possible synchronous states with following phase shifts: 817 = f21 = 0 A 31 = P41 = 7 or
B11 = P21 = P31 = P41 and we show them in Fig.4. Finally, for n = 5 the synchronization condition
takes the form: 817 = 0 A sin 831 + sin 831 + sin 841 + sin B5; = 0. That implies the flowing solutions:
Bor=0APBs1=0ABu=0ABs1=00r P11 =0ABo1 =21 A B31 =37 A Bur =31 A Bs1 =537
or combinations when two double pendula are in anti-phase synchronization and three are shifted

by 27 /3 (see phase shifted state of three coupled double pendula). All described configurations are
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presented in Fig. 5.

(b)
‘i\‘i\\\l l > > >
(d)
\ T / | l > 5 < |
Fig. 3: Possible synchronous states for n = 3 double pendula: (a,b) upper and lower pendulums 1n

phase 511 = [321 = 531, BlZ = 522 = ,@32, ( ) upper and lower pendula shifted by
511*0/\521f*/\51*4iand51270/\5227*/\5 = .

(b)
ﬂ\.\\\.\l l > > ) )
(d)
>><< l [/f/. i\i\l
Fig. 4: Possible synchronous states for n = 4 double pendula: (a,b) upper and lower pendula in phase:

B11 = P21 = B31 = Ba1 and P2 = Pz = B3z = Pao; (Cad) upper and lower pendula in anti-phase
in pairs: f11 = —f31,021 = —f41 and B2 = — B3, fo2 = —Pao.

(c

(a) (b)

l\\\\.\\\\.\] l) > > > >]

) (d)

®
l e ] l ° 9 a_ o~

Fig. 5: Possible synchronous states for n = 5 double pendula: (a,b) upper and lower pendula in phase:
P11 = P21 = P31 = Pa1 = P51 and Bra = Baz = P32 = Baz = Ps2; (¢,d) upper and lower pendula
synchronized in phase in two anti-phase clusters; (e,f) upper and lower pendula shifted by 2=:
B = 0/\ﬁ21 = /\ﬂ31 = ZABn = EABs1 = % and B2 = 0\ Poz = Z A\ Bs2 =
%S —
ENBa2 =N 5 =
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Synchronous states for n double pendula

According to detailed analysis of synchronization in system of n = 2, 3, 4, 5 coupled double pendula
we can generalize obtained results for an arbitrary number n of systems. Despite the value of n we can
observe the state where all double pendula are synchronized in phase which means that all upper and
similarly all lower pendula are completely synchronized. They act on the beam causing its oscillations.
Considering other possible configurations we have to recall our assumptions which are used to derive
the analytical condition of synchronization: the beam is at rest and double pendula perform harmonic
motion. The minimum number of double pendula in cluster is two because for two and more double
pendula in cluster, forces acting on beam vanish. As clusters are not acting on one another via the
beam, the phase shift between clusters can be an arbitrary number from 0 to 27. The number of
double pendula in each cluster is a prime number because any other number can be expressed as a
sum of prime numbers [24]. The phase shift between double pendula in cluster is 27 /ny, where ny
is a number of double pendula in the cluster (n; is a prime number). For example for n = 11 we
can observe the following numbers of double pendula in clusters: (3, 2, 2, 2, 2) or (3, 3, 3, 2) or
(5, 3, 3) or (5, 2, 2, 2) or (7, 2, 2) or (11). Note that (9, 2) is not a possible solution - the cluster
of nine double pendula can be created from three clusters with three pendula shifted by 27/3. The
formula which let us calculate the number of possible configurations is complex, hence it is better to
base on an algorithm (see Appendix B in [22]) which give us explicit results. The number of possible
clusters grows much faster than the number n of double pendula (the tendency is close to exponential),
e.g, for n = 10 (5 clusters), n = 30 (98 clusters), n = 60 (2198 clusters), n = 90 (38257 clusters),
n = 120 (145627 clusters). Additionally, when number of double pendula is a prime number we have
a case where double pendula are equally distributed with phase shift 27 /n, so for our example with
n = 11 double pendula we observe a seventh possible configuration. For all mentioned above types
of synchronization in each double pendulum the upper and lower pendulum can be synchronized in
phase or anti-phase, hence the number of possible synchronous states is two times bigger than the

number of possible clusters.

4.2 System with clock escapement mechanism.

The analyzed system is shown in Fig. 6. It consists of the rigid beam and two double pendula suspended
on it. The beam of mass M can move in horizontal direction, its movement is described by coordinate
X. The beam is connected to the refuge by a linear spring with stiffness coefficient Kx and linear
damper with damping coefficient C'x. Each double pendulum consist of two light beams of length L,

Lg; and two masses M,; and Mg;, where ¢ = 1,2, mounted at beam’s ends. The lower pendulums are
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mounted to the upper ones at the distance L,;. The motion of each double pendulum is described by
angles @.; (the lower pendula) and ¢g; (the upper pendula). The oscillations of the double pendula
are damped by the viscous dampers Cy; and C.; (not shown in Fig. 6). The lower pendula of each
double pendulum are excited by the clock escapement mechanism represented by momentum Mp;.
This mechanism acts in two successive steps (the first step is followed by the second one and the
second one by the first one). In the first step if 0 < (pe; — psi) < YN then Mp; > My; and when
(ei — @si) < 0 or YN < (pei — @s;) then Mp; = 0, where vy and My; are constant values which
characterize the mechanism. For the second stage one has for —yy < (pei — ¢si) < 0 Mp; = —Mp;
andMp; =0 for 0 < (@ — wsi) or —yn > (e — wsi). Considering a mass M1, length L.jof the first
lower pendulum and gravitational acceleration g as a reference parameters and take dimensionless

time 7 = «at, where o = , /L%l, equations of system’s motion take form:

Meil 2 Pei + MeilatlesPsi cos(pei — psi) + Meileilai 92 SIn(Qei — @si) + Meileid €08 Yei + Cpei (Pei — Psi)  (10)
+MeiMe; sin pe; = Np;
mcilfisb'ci + mcil?“-@si + MmeilailciPei cos(pei — wsi) + mcilcilaisbgi SIn(Qei — Psi) + Meoilsid COS Psi + CopsiPsi
(11)

—Copci (ﬁpcz - 90“) + msilsi sin Psi = —Np;

2 2
<mB + Z(m“ + m5¢)> Z+cal + kzx = Z(msilsi + Meilai) (—Psi cOs si + $2isin Psi) (12)

1=1 =1

2
+ > meilei (—ei cos pei + $2; sin pei)
1=1

. _ My _ My _ M _ L _ L .. _ X _ CyeivIa
where: 1 = 17 25 Mei = M:i’ Mgi = Mci’ my = ]Vfi’ lci - LLC-;’ lsi - Lji’ T = Lo Copci = #21\;@3
R C¢sivLc1 _ Cx+VLe _ KxL& R Mp; . - 1
Cosi = NaLZ/5 @ = Mas ke = S5 Npi = 37,155 and symbols "and ” denote respectively
d d?
r and gz

For obtined equations we can perform similar analisys are for system with van der Pol’s type of
damping. Let us assume that motion of system is periodic and oscillations of the double pendula can
be approximated by harmonic functions: ¢.; = ®.;sin (7 + S) and g = Dy sin (7 + Bs;) where S,
and f.; are phase shift angels between pendula.

hence based on energy balance method we can determine the energy which is transferred to the
beam from pendula, the energy which is transferred between lower and upper pendula and the energy
which drive pendula during one period of motion. The equations of energy balance have the following

form:
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e
b

cl

Fig. 6: The model of two double pendula suspended to a beam.

WcIiNERT + WCS;YN + ngAMP _ WC?RIVE (13)
WinNERT T WSS;YN + WS?AMP T WsDczAMP _ W£RIVE (14)
WPAMP — —  yysYN, (15)

Eq. 13 corresponds to energy balance of ¢ — th lower pendulum, Eq. 14 to energy balance of
i — th upper pendulum and finally the Eq. 15 to the energy balance of the beam. In Eqs 13and 14
components WYY represent synchronization energy. The sum WYY 4+ WHYN = (SYN (j = 1, 2)
is total synchronization energy of ¢ — th double pendulum which is transferred to the beam. The

SYN
W

synchronization occurs when vanished. Assuming that lenghs and masses of pendula are equal

the solution of Eqs 13-15 let us derive the synchronization condition of double pendula in the following

form:

sin(Bs; — Bek) = 0
sin(Be; — Bex) = 0 (16)
sin(Bs; — Bsk) = 0
sin(Be; — Bor) = 0

where i =1, 2 and k = 1, 2. Assuming that 8.; = 0 (one phase angle can be arbitrarily taken). System
of equations 16 is fulfilled when phase angles 8.1, 8c2, Bs1, Bs2 are combinations of 0 or 7. The possible

synchronization states are shown in Fig.7.
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(a) (b)
l ‘i\\ @\\l l < /ﬁ ]
(© (d)
l ‘i\\ /P ] l < %\l
Fig. 7: Possible states of synchronizations: (a) all pendula are in phase 51 = Bs2 = Be1 = B2 = 0, i.e,.
both pendulum move identically; (b) upper pendula are in phase 851 = Bs2 = 7, Be1 = Be2 = 0,
i.e., both pendula move identically, lower and upper pendulum are in anti-phase; (c) both

pendulums move in opposite directions 851 = Bc1 = 0, Bs2 = Be2 = m; (d) upper pendula are in
anti-phase, the lower and the upper pendula are in anti-phase 851 = B2 = 7, Bs2 = Be1 = 0.

5 Conclusions

The aim of this study was to derive a mathematical model of the systems, calculate periodic solutions,
identify the different types of synchronous states and investigate the influence of system’s parameters
on the stability of synchronization.

In first paper for identical pendula, four different synchronous configurations are possible. The
appearance of those states can be explained by the energy expressions which also show why other
synchronous states are not possible. Nevertheless, not all synchronous states are stable for the given
parameters of the beam. When the pendula are nonidentical, i.e., have different masses, we observe
synchronous states for which the phase difference between the pendula vary in range from 0 to 7. All
obtained solutions destabilize in the Neimark-Sacker or saddle-node bifurcations, which results in an
appearance of unsynchronized quasiperiodic oscillations or a jump to another attractor.

In second article we derive the analytical condition which enable calculation of the possible periodic
solutions for any number of double pendula. The number of possible configurations grows with the
number of coupled pendula. We examine how stability of each considered periodic solution changes
with varying natural frequency of the beam. In the considered system, the typical bifurcation that
stabilizes/destabilizes periodic solutions is a Neimark-Sacker bifurcation. The proper choice of beam’s
mass parameter one can ensure that only selected solutions are stable.

The last paper let us conclude that two double pendula self-exited by the escapement mechanism
hanging from the horizontally movable beam can synchronize in four configurations. When the pendula
are nonidentical, i.e., have different lengths (and periods of oscillations) for small parameters’ mismatch
we observe the synchronous states for which the phase difference between the pendula is close to 0 or

7 but for larger differences unsynchronized quasiperiodic oscillation dominates.
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Abstract. We consider the synchronization of two self-excited double
pendula. We show that such pendula hanging on the same beam can
have four different synchronous configurations. Our approximate ana-
lytical analysis allows us to derive the synchronization conditions and
explain the observed types of synchronization. We consider an energy
balance in the system and describe how the energy is transferred be-
tween the pendula via the oscillating beam, allowing thus the pendula
synchronization. Changes and stability ranges of the obtained solutions
with increasing and decreasing masses of the pendula are shown using
path-following.

1 Introduction

Synchronization is commonly observed to occur among oscillators [1-5]. It is a process
where two or more systems interact with one another and come to oscillate together.
Groups of oscillators are observed to synchronize in a diverse variety of systems, de-
spite inevitable differences between oscillators. The history of synchronization goes
back to the 17th century. In 1673 the Dutch scientist Ch. Huygens observed weak
synchronization of two pendulum clocks [6]. Recently, the phenomenon of synchro-
nization of clocks hanging on a common movable beam [7] has been the subject of
research conducted by numerous authors [6,8-18]. These studies explain the phenom-
enon of synchronization of a number of single pendula.

In our work we consider an interaction between two double pendula. One of the
first investigations on dynamics of the double pendulum can be found in the paper by
Rott [19], where an analytical investigation of the Hamiltonian system for different
ratios between natural frequencies of pendula is presented. The next results obtained
by Miles [20] show dynamics of the double pendulum under parametric excitation
around the 2 : 1 resonance. A mode interaction in the double pendulum, including a
detailed bifurcation analysis near two multiple bifurcation points and a transition to
quasi-periodic motion and chaos around the 2 : 1 parametric resonance, is presented in
[21-23]. Similarly as for 2 : 1, the 1 : 1 resonance leads to dynamics including multiple
bifurcation points, symmetry breaking and cascades of period doubling bifurcations

# e-mail: przemyslaw.perlikowski@p.lodz.pl
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Fig. 1. Model of the system — two double pendula are mounted to the beam which can
move horizontally. Each double pendulum consists of an upper pendulum of the length ;1
and the mass m;; and a lower pendulum of the length l;» and the mass m;»> (i = 1,2). The
upper pendula are self-excited.

[23]. Double pendula can be also considered as an example of many physical systems
commonly met in engineering, e.g., a model of bridge-pedestrian interactions [24], golf
or hockey swing interactions with arms [25], human body [26] or trunk [27] models.

In this paper we consider the synchronization of two self-excited double pendula.
The oscillations of each double pendulum are self-excited by the van der Pol type of
damping associated with the upper parts (upper pendula) of each double pendulum.
We show that two such double pendula hanging on the same beam can synchronize
both in phase and in anti-phase. We give an evidence that the observed synchronous
states are robust as they exist for a wide range of system parameters and are pre-
served for the parameter mismatch. The performed approximate analytical analysis
allows us to derive the synchronization conditions and explain the observed types of
synchronization. The energy balance in the system allows us to show how the energy
is transferred between the pendula via the oscillating beam.

This paper is organized as follows: Sect. 2 describes the considered model of the
coupled double pendula, in Sect. 3 we derive an energy balance of the synchronized
pendula, whereas Sect. 4 presents the results of our numerical simulations and de-
scribes the observed synchronization states and their ranges of stability. Finally, we
summarize our results in Sect. 5.

2 Model

The analyzed system is shown in Fig. 1. It consists of a rigid beam and two double
pendula suspended on it. The beam of the mass M can move along the horizontal
direction, its movement is described by the coordinate x;.The beam is connected to
a linear spring and a linear damper, k, and c,.

Each double pendulum consists of two light beams of the length [;; and the masses
m;1 (i-th upper pendulum) and the length l;» and m;o (i-th lower pendulum), where
1 = 1,2, mounted at its ends. We consider double pendula with the same lengths
l11 = la1 = l13 = lag = | but different masses m;; and m;s (to maintain generality in
the derivation of equations, we use indexes for lengths of the pendula). The motion
of each double pendulum is described by the angles ;1 (upper pendulum) and ;o
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(lower pendulum). The upper pendula are self-excited by the van der Pol type of
damping (not shown in Fig. 1) given by the momentum (torque) cyap@1:(1 — pp3;),
where ¢,qp and p are constant. Van der Pol damping results in the generation of a
stable limit cycle [1]. The lower pendula are damped with a viscous damper with the
coefficient ¢;5. The equations of motion of the considered system are as follows:

2 2 2
(M 4> mij)iy + Y (max + maz)lin ($i1 cos pi1 — ¢7) sin i)
=1 j=1 =1
2
+ Z migliz (9012 COS ;2 — (,0122 sin QOZQ) + kz.’Eb + Cz.’tb = 0
i=1

(mi1 + mao)lirdy cos pi + (M + ma2)lA @in + maalinlinPio cos(in — Piz)
+munlinlingls sin(pin — i) + (ma + mia)ling sin(pn)

+evap(l — 1o}y ) @i + cia(Piz — ¢ir) =0

Mialindp €08 pi2 + MialinlinBin cos(pin — @in) + Miali i

—mialitliogh sin(pi1 — piz) + Mialing sin(piz) — ci2(Pia — ¢ir) = 0. (1)

Introducing the dimensionless time 7 = wt, where w? = % is the natural frequency

1
of the upper pendula, we can rewrite Eq. (1) in the dimensionless form as:

2 2
iy + Z Ajq (i1 cos i — 1/%21 sin ;1) + Z Ao (12 cos o — 1/1122 sin 1);2)
i=1 i=1
+Ky, + Cyp =0 (2)

0i19b COS i1 + Lil"ﬁil + Li312;i2 cos(ti1 — io) =
—Lisp% sin(vi — vi2) — Garsin(¥i) — Coap(1 — 0 )1 — Caz(vhiz — Pi1) (3)

dialjb COS Py + L13¢i1 cos(¥i1 — i) + L1'27Z;i2 =

o . . .

Lizt;) sin(thin — ¥i2) — Gz sin(¢z) + Cio(Yiz — ¥i1) (4)

o (maatmaa)la o mu2lie ks _ cCa o (maatmaa)la

where Azl - Ml, ) Az - "M, K = Mw2> C = Mo’ 611 - Ml )

o myolis R (mi1+maa)l?; R mial?, o muolialin o (matmas)lag

512 — Ml Lzl - lialy M ) LZQ — T2y M L’L3 — ,Mlis Gzl - liow2l, M

. _maaliag _ Cudp o Cio

Giz = liow2l, M Cvdp — wipMlis? Ciz = Tiowly M *

3 Analytical conditions for synchronization
3.1 Force with which the pendula act on the beam

In this section we derive an approximate analytical condition for the pendulum syn-
chronization in the considered system. Assuming that the double pendula are identical
and perform periodic oscillations with the frequency wy and low amplitudes, one can
describe displacements, velocities and accelerations of the upper and lower pendula
in the following way:

i; = @y sin(wot + Bij), (5)
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i = wody; cos(wot + Bij), (6)

Pi; = —wi®i; sin(woT + Byj), (7)
where §;; (i,j =1,2) are phase differences between the pendula.

Equation (2) allows an estimation of the resultant force with which the pendula
act on the beam:

2 2
F=— Z A“(@Z}il cos ;1 — @[1121 sin ;1) — Z AiQ(IZ}zQ COS Pjp — 1[1122 sintya).  (8)
i=1 i=1

Substituting Eqs. (5-7) into Eq. (8) and considering the relation cos?asina =

0.25sin a + 0.25 sin 3, one obtains:

F = A [wi®1(1 4+ 0.250%,) sin(weT + B11) + wi®3,0.25sin(3woT + 3611)]
+A15[wi®i2(1 + 0.258%,) sin(woT + Bi2) + wiPF50.25sin(3weT + 3612)]
+ Ao [waPo1 (1 + 025032, ) sin(woT + Ba1) + wi®3,0.25sin(3woT + 3621)]
+ Ao [wiPas(1 + 0.2582,) sin(woT + Baa) + wa®3,0.25 sin(3woT + 3322)]. (9)

Equation (9) is the right-hand side of equation of the beam motion (2), hence we
have:

b + Ky, + Cyp = F. (10)
Assuming that the damping coefficient C is small, one gets:
2 2 2 2
Yp = Z Z XIUAU sin LU()T + ﬁz; Z Z 3”A” sin 3&)07’ —+ 3ﬂ”)
i=1j=1 i=1 j=1
2 2 2 2
b = Z Z Ay Ay sin(wot + Bi) + Z Z 9A3:5 A5 sin(3wot + 38;;),  (11)
i=1 j=1 i=1 j=1
where:
Wa®,;(1+ 0.2592, 0.25w2 @2,
Xy = 0% 5 U)7 X3ij = 702]7
K —wj K — 9wg
—wi®;; (1 + 0.2502, —0.25wi 3.
Ay = _APULHO025P) T2 (12
K — wj K — 9wg

Equations (11) represent the displacement and the acceleration of the beam M,
respectively.

3.2 Energy balance of the system

Multiplying Eq. (2) by the velocity of the beam g,, we obtain:

2
i + Ky = —Cyjy — Z Ay (Pingy cos iy — 7 e sin )
i=1
2 . .
=) A (hiagin 08 iz — Yt Sinia). (13)

i=1
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Assuming that the motion of the pendulum is periodic with the period T (T' = 27 /wy)
and integrating Eq. (13), we obtain the following energy balance:

T T T

T 92 /2
/ijbydeJr/ Kypgpdr = */C?)ng*/Z <Z A (thij cos i — 7 Sin¢ij)> YpdT.
0 0 0 o J=1 \i=l

(14)
The left-hand side of Eq. (14) represents an increase in the total energy of the beam
which for the periodic oscillations is equal to zero:

T
/ybyde-l-/Kybyde =0. (15)
0

The first component of the right-hand side of Eq. (14) represents the energy dissipated

by the linear damper C:
T

WRAMP _ / Cyidr, (16)
0

whereas the second component represents the work performed by horizontal compo-
nents of the force with which the double pendula act on the beam causing its motion:

T 5 2
WREIVE = / > (Z Aj (i cosy; — 7 sin W)) gpdr. (17)

o =1 \i=1
Substituting Eqgs. (16) and (17) into Eq. (14), we get:
WDRIVE _ yyDAMP _ (18)

beam beam

Multiplying the equation of the upper pendulum (Eq. (3)) by the velocity i, we
obtain:
Sirdisthi1 cos i + Linthinthin + Lizthiathin cos(¥in — ¥i2) = —Ligthin i sin(vin — ¥i2)
—G i1 sin(Yi1) — Cogp(1 — o) )b + Ciz(tia — Yir)ihin - (19)
Assuming that the oscillations of the pendula are periodic with the period T and
integrating Eq. (19), one obtains the following energy balance:
T T T
/Lm?l}ill/}ildTJr/Gill[Jﬂ sin ;1 dr = */5112%’4/}1'1 cos Py dr
0 0 0
T

- /Lis(”lbu’é[}izz Sin(%‘l - ”%’2) + szzwzl COS(%& - %2))(17'
T0 T T T

—/Cvdp¢1'21d7+/Cudpﬂ¢?1¢f1d7'+/Ciﬂiﬂ/}ildT—/01‘2%21617- (20)
0 0 0 0

The left side of Eq. (20) represents the total energy of the upper pendula, which in
the case of periodic oscillations is equal to zero:

T T
/LMLn@ldT-F/Gﬂ%l sint;1dr = 0. (21)
0

0
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The first component of the right side of Eq. (20) represents the energy which is
transferred to the beam:

T
Wi = /&1%%1 cos Y1 dr. (22)
0

The second component describes the energy which is transferred to the lower pendu-
lum:

T
Wi P = */Lis(%ﬂ/}é sin (i1 — Yiz) + Piothin cos(i — Pio))dr, (23)
0

and the third component describes the energy which is supplied to the system by the
van der Pol damper in one-period oscillations:

T
WhAMP _ / (Codp + Cia)0? — Corlhntbindr. (24)
0

Finally, the last component represents the energy dissipated by the van der Pol
damper:

T
Wi = _/0 pCoap¥iy i dr, (25)
Substituting Eqgs. (22-25) into Eq. (20), we obtain the following relation:
WEYN Py SYN | gy SELF | yyDAMP _

Multiplying the equation of the lower pendulum (Eq. (4)) by the velocity 42, one
gets:

5i2ﬂb¢¢2 cos ;o + Li3¢i1'¢.}i2 COS(7/Ji1 - 77211'2) + Li2¢i212;i2 = (26)
Lzt 1o sin(i1 — tiz) — Giathiz sin(tia) — Cia(tia — i1 )ibia.

Assuming that the oscillations of the pendulum are periodic with the period 7', the
integration of Eq. (26) gives the following energy balance:

T T T
/Li2¢i2¢¢2d7+/(}i2¢¢2 sin(yio)dr = —/ﬂmﬂb%z coS WP;odT
0

0 0
T
- / Liz (V2 o sin(sin — ia) — Pi1thia cos(hin — tiz))dr
0

T T

—/Ci2¢?2d7'+/ci2¢i1¢i2d7- (27)
0 0

The left side of Eq. (27) represents the total energy of the lower pendulum, which in
the case of periodic oscillations is equal to zero:

T T
/Li2¢i2¢.i2d7+/Gi2¢i2 sin(;2)dr = 0. (28)
0

0
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The first component of the right side of Eq. (27) represents the energy which is
transferred to the beam via the upper pendulum or to the next pendulum via the
upper pendulum and the beam:

SYN /512%1/%2 COs wﬂdT (29)

The second component describes the energy which is transferred to the upper pen-
dulum:

T
WV P = /LzS Y2 iz sin(i — iz) — Yirthiz cos(Pin — iz))dr. (30)
0

and the last component represents the energy dissipated by the damper:
T
WHAMP = — / Cia(thiz — Y1 )indr (31)
0

Substituting Eqgs. (29-31) into Eq. (27), one obtains the following relation:
WEYN P SYN | yyDAMP _

3.3 Energy transfer between the upper and lower pendula

The energy transferred from the upper to lower pendulum is given by:
T
Wi P = —/Li?,(le cos(thin — Yia) + Vi sin(Pin — ia))Pundr, (32)
0
and the energy transferred from the lower to upper pendulum is:
T
WaN P = */Li?,(?l;ﬂ cos(thi1 — Vi) — U sin(thi1 — Vo)) Yiadr. (33)
0
Taking into account Egs. (5-7), Eq. (33) takes the form:
T
WEYN P = L /(—w%@ig sin(wot + Biz) cos(P;1 sin(wot + Bi1) — iz sin(wot + Biz))
0
+wi®Z, cos? (wot + Bia) sin(®;y sin(wot + Bi1)
—®;5 sin(wot + Biz)))wo®i1 cos(wot + Bi1)dT
= Lismwi ®;1 @2 sin(Bi2 — Bi1), (34)
and
Wi'N P = Ligmwi @ iasin(Bin — Bin) = -Wi' NV P, (35)

The synchronization between the lower and upper pendula occurs when:

WEYNFP =0 = sin(Bi — Bir) =0. (36)
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Condition (36) is fulfilled when:
Bin =Pz V (Bir = 0A Biz = ). (37)

In the first case, the oscillations of the upper and lower pendula are in-phase, i.e.,
the pendula move in the same directions, whereas in the second case they are in anti-
phase, i.e., the pendula move in the opposite directions. For low oscillations, limit
conditions (37) define two normal modes of oscillations [1].

3.4 Synchronization of the double pendula

In each equation of the pendulum motion, there is a component influencing the beam
motion

MZ-?YN = 6ijj/.b COS ’(/Jij, (38)

which is called the synchronization momentum (torque). The work done by this mo-
mentum during one period is equal to zero.

T
WZ-?YN = /0 6ijyb COS "/}ijwide =0. (39)

Substituting Egs. (5, 6) and (11) into (39) and performing the linearization, we arrive
at:

2 2

T 2 2
WEYN _ /0 611 Z Z 1ij Ay sin(wot + Bi;) + > AsijAyjsin(3wot + 35;;)

=17 =1 j=1
Xwo®P11 cos( +ﬁ11)d7 =

= 011w P11y Z Z Ay Aijsin(Bi; — Bi) =
i—1 j—1

2
Z GijMij Sin(ﬁij - 511) =0,

=1 j=1

-

= 5611@11

WSYN £012P12 ®ijMij Sin(ﬁij - 512) =0,

M
1

s
Il
-

~
Il
i

WYY = €621 Po ©;; M;;sin(B;; — B21)| =0,

M
1M

s
Il
-

~
Il
i

2 2
WS = et | 53000 sin(y — )|~ "
_z:l Jj=1 |
where:
g—Lgﬂ- M = (mi +m2)l; Mo = miols @--—<I>~(1+025q>2)
= Mlb(K — wg)v i1 — 71 12 )il 2 — 12032, ij — Lij . ij)

(41)
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(a) (b)
| s |
\|j21

WZZ

| |
\ < Vo,
Fig. 2. Synchronous states of the system ( ) upper and lower pendula in phase: 111 =
121 and 112 = a2, (b) upper pendula in phase lower pendula in anti-phase: 111 = 121 and
Y12 = —1ha2, (c) upper and lower pendula in anti-phase: Y11 = —t21 and Y12 = —1h22 (d)
upper pendula in anti-phase, lower pendula in phase: ¥11 = —t21 and Y12 = ¥a2.

Equations (40) allow the calculation of the phase angles 3;; for which the synchro-
nization of periodic oscillations of the pendula occurs. The synchronization occurs
when the following equations are fulfilled:

O12 M2 sin(B12 — B11) + O21 Moy sin(Ba1 — S11) + O22Moas sin(fae — Bi11
©11 M1y sin(B11 — B12) + O21 Moy sin(Ba1 — Bi2) + O20 Moo sin(faz — 12
©11 M1y sin(B11 — Bo1) + O12Mizsin(Bi2 — B21) + O20 Moy sin(Baz — fo1
©11 M1 sin(B11 — Ba2) + O12 My sin(Bia — Baz) + O21 Moy sin(fa1 — fa2

(42)

I
c oo o

)
)
)
)

Equations (42) are fulfilled for §;;, which are combinations of 0 and 7. Assum-
ing that 817 = 0, one can identify the following pendulum configurations which are
presented in Fig. 2(a—d). The first type is the configuration shown in Fig. 2(a). Both
the upper and lower pendula are phase synchronized, i.e., 111 = 21 and 12 = 1og
(B11 = P12 = B21 = P22 = 0 or B11 = P21 = 0, P12 = B2z = 7). The upper and lower
pendula are synchronized in phase and anti-phase, respectively, i.e., 111 = 91 and
112 = —1)9g in the configuration from Fig. 2(b) (611 = P12 = P21 = 0, B2z = 7 or
811 = B12 = Pa2 = 0, P21 = m). Figure 2(c) presents the case when both the upper
and lower pendula are synchronized in anti-phase, i.e., ¥11 = —t21 and 192 = —ag
(B11 = P12 =0, Bo1 = Pao = mor f11 = Baz = 0, B12 = f21 = ). Finally, in Fig. 2(d),
we present the case when the upper pendula are in anti-phase and the lower pendula
are in phase ¥11 = —t1 and 12 = a2 (B11 = P12 = P22 = 0, fo1 = m or B = 0,
Ba1 = P12 = Paa = T).

4 Numerical investigations

In our numerical calculations, we use the Auto 07p [29] continuation toolbox to
obtain periodic solutions. To start path-following, we integrate Egs. (2-4) with
the fourth-order Runge-Kutta method. We consider the following parameter values:
mi11 = M1 = M21 = Mg = 1.0 [kg], M =10.0 [kg], l11 = l12 = 121 = 122 = 0.2485 [m],
ky = 4.0[N/m], ¢, = 1.53[Ns/m], cygp = —0.1[Ns/m], u = 60.0[m 2], c;x =
0.0016 [Ns/m], which yield the following dimensionless coefficients A;; = 0.0354986,
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Fig. 3. Pendulum and beam displacements for one period of motion (N = 1) for four different
periodic solutions in the case of identical masses of the pendula: mi11 = mi2 = ma1 = ma2 =
1.0 [kg]. The displacement y;, of the beam M is shown 10 times magnified. (a) pendulum
configuration from Fig. 2(a) with the period T' = 7.233, (b) pendulum configuration from
Fig. 2(a) with the period T' = 3.362, (c) pendulum configuration from Fig. 2(c) with the
period T = 3.748, and (d) pendulum configuration from Fig. 2(c) with the period 7' = 8.266.

Ao =0.01774933, §;7 = 0.142857, §;o = 0.0714286, L;; = 0.035986, L;, = 0.0177493,
L;z = 0.0177493, G;; = 0.0354986, Gz = 0.0177493, Cyqp, = —0.00457491,
C,2 = 0.0000714286, C = 0.0173934, K = 0.00723723. Our bifurcation parameters
are masses of the pendula and the beam. To hold an intuitive physical interpretation,
we change dimensional masses, but all the calculation are performed for dimensionless
equations.

4.1 Periodic solutions to the pendula with identical masses

Depending on the initial conditions, we observe four different synchronous states of
system (2-4) as shown in Fig. 3(a—d). The in-phase motion is represented by two
periodic solutions: the first type is characterized by a lack of phase differences in
the pendulum angular positions: £11 = f21 = [12 = Bz (see Fig. 3(a)), whereas
the second one - by a phase difference between the upper and lower pendula in each
double pendulum: ﬂll = ,621, /612 = 522 and ﬂil — /61‘2 = T, 1= 1,2 (see Flg 3(b))
In both cases, the displacements of the upper and lower pendula of each double
pendulum are identical, i.e., ¥17 = 191, Y12 = ¥92. The beam motion is in anti-phase
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to the upper pendula and in-phase (Fig. 3(a)) or anti-phase (Fig. 3(b)) to the lower
ones. These two configurations correspond to the analytically predicted synchronous
state presented in Fig. 2(a). The second type, the anti-phase motion, for which the
beam is not moving, is shown in Fig. 3(c,d). We can also distinguish two types of
this periodic solution, both characterized by the following phase differences of the
pendulum displacements: 811 — B21 = 7 and (12 — B22 = m, but different phase shifts
between the pendula in each double pendulum: §;1 — B2 = 7, i = 1,2 (see Fig. 3(c))
and B;1 — Bi2 = 0,1 = 1,2 (see Fig. 3(d)). The beam M is at rest, because reaction
forces acting on the beam are vanishing. These pendulum configurations correspond
to the theoretically predicted synchronous state presented in Fig. 2(c). Note that
for this type of the synchronous state, amplitudes of pendulum oscillations can be
estimated analytically. Substituting 517 = B12 = 0 and (21 = (22 = 7 in Egs. (42),
one can derive an analytical formula for amplitudes of pendulum oscillations. The
amplitudes of the upper pendula can be approximated by:

1
By = oy = 2\/>. (43)
n

The approximate values of the amplitudes of oscillations of the lower pendula can be
calculated from the following condition:

1
Zwoﬂ(‘lcw(‘l% + @) + Coap®7 (4 — p®@7)) — 8Cin @i ®iz cos(Bin — Biz)  (44)
+®;1®;2(P7, — 7)) Lijzwo sin(Bi — Biz)) =0

For i = 1,2, formulae (43) and (45) give good approximation of the numerical values,
e.g., for the parameter values in Fig. 3(c,d), the analytically calculated amplitudes of
the upper and lower pendula are ®1; = $9; = 0.2581 and ®15 = Po5 = 0.4244, respec-
tively, whereas the numerical values are ®1; = ®9; = 0.2522 and @15 = P95 = 0.3536
for Flg 3(C) and ‘I’lg = ‘I’QQ = 0.2579 and @12 = @22 = 0.3732 for Flg 3(d) In
Fig. 3(a,d), one can see that the pendula do not pass through zero (the hanging down
position) at the same moment of time, whereas in Fig. 3(b,c) the pendula cross this
position simultaneously. The phase shift is observed only when the lower and upper
pendula in each double pendulum are oscillating in-phase with non-zero damping be-
tween them.

We do not observe the configurations shown in Fig. 2(b,d) because each of the double
pendulum has to reach different normal modes of oscillations for the same frequency
for both of them. This is proven to be impossible in the low oscillation approximation
[1] (the angular positions have to be much higher than the one considered in this
paper).

The periodic solutions presented in Fig. 3(a,b,d) are stable, whereas the one from
Fig. 3(c) is unstable. To show how a change in the natural frequency of the beam
affects the stability of the periodic solutions obtained, we calculate one-parameter
bifurcation diagrams. We choose the beam mass M as the bifurcation parameter
and vary it in the range from 0.01 [kg] to 20.0 kg]. In the case of two solutions: one
in-phase (Fig. 3(b)) and one anti-phase (Fig. 3(d)), we do not observe any desta-
bilization of periodic solutions. For the two others, we present bifurcation diagrams
showing the maximum amplitudes of the beam oscillation max y;, on the vertical
axes. The black and gray colors of branches correspond to stable and unstable peri-
odic solutions. For the branch presented in Fig. 4(a), we start a continuation from
the in-phase periodic solution shown in Fig. 3(a). Originally, the stable periodic orbit
becomes unstable with a decreasing beam mass M in the Neimark-Sacker bifurca-
tion for M = 3.88 [kg]. The Neimark-Sacker bifurcation point corresponds also to
the maximum amplitude of the beam. In Fig. 4(b), we show a continuation of the
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Fig. 4. One-parameter path-following of periodic solutions for the varying mass M of the
beam: (a) in-phase motion from Fig. 3(a) and (b) anti-phase motion from Fig. 3(c). The
black and gray lines correspond to stable and unstable periodic solutions, respectively. The
abbreviation NS stands for the Neimark-Sacker bifurcation and PT denotes the pitchfork
bifurcation. Bifurcations along unstable branches are neglected. The starting points of con-
tinuation are marked by black dots.

anti-phase oscillations of the pendula (Fig. 3(c)). The stabilization of this type of the
periodic solution occurs in the supercritical pitchfork bifurcation (two new branches
emerge) for M = 1.737 [kg]. In the symmetric anti-phase motion, the beam is at rest
and the maximum amplitudes of the pendula remain the same. For the asymmetric
periodic solutions along two overlapping branches, the beam is oscillating with a low
amplitude and we observe a difference between amplitudes of the pendula. The asym-
metric motion destabilizes with an increase in the beam mass M in Neimark-Sacker
bifurcations for M = 2.06 [kg].

4.2 Periodic solutions of the pendula with different masses — exploring symmetry

In this subsection, we investigate the stability of symmetric motion of the pendula
from Fig. 3(c,d), which corresponds to anti-phase synchronization states. We de-
crease the masses mis and mog of the lower pendula in the range (0.0, 1.0] [kg]. We
choose masses of the lower pendula as the bifurcation parameter because we want to
avoid a situation where the lightweight upper pendula excite the much heavier lower
pendula.

In Fig. 5(a,b) we present bifurcation diagrams, i.e., the maximum amplitudes
of the beam (a) and the second upper pendulum (b) for decreasing masses of the
lower pendula. As an initial state, we take the anti-phase periodic solution for which
all pendula have identical masses (see Fig. 3(d)). For mi2 = mage = 0.108 [kg],
the symmetry is broken in the subcritical pitchfork bifurcation. We observe an ap-
pearance of two unstable branches which stabilize in saddle-node bifurcations for
mia = Moy = 0.107 [kg], a further loss of stability occurs in the supercritical Neimark-
Sacker bifurcations for mis = mas = 0.105 [kg], hence two stable quasi-periodic solu-
tions appear. This scenario is observed only when the system has symmetry. The bifur-
cation diagram for a system without symmetry (m1; = 1.0 [kg] and miz = 0.99 [kg])
is shown in Fig. 5(c,d). We present the maximum amplitudes of the upper pendula in
the range m;2 € (0.0, 0.15] [kg] (for m;z € (0.15, 1.0] [kg], solutions are stable). As can
be easily predicted, the pitchfork bifurcation is no more present and we observe two
disconnected branches of periodic solutions (the imperfect pitchfork bifurcation). As
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Fig. 5. In (a,b) we show one-parameter path-following of the anti-phase synchronous mo-
tion starting from the periodic solution shown in Fig. 3(d). The changes in the maximum
amplitude of the beam max y, (a) and the second upper pendulum max 112 (b) are shown
for decreasing masses of the lower pendula m;> = (0.0, 1.0] [kg] (¢ = 1,2), whereas the up-
per pendula have masses equal to 1.0 [kg]. In (c,d) the same calculations are performed for
asymmetrical masses of the upper pendula (mi1 = 1.0[kg] , m21 = 0.99 [kg]) in the range
ms2 € (0.0, 0.15) [kg] (¢ = 1,2), for m;2 € (0.15, 1.0) [kg] (¢ = 1, 2), solutions are stable. The
black and gray lines correspond to stable and unstable periodic solutions, respectively. The
abbreviations correspond to: PT — pitchfork bifurcation, NS — Neimark-Saker bifurcation,
and SN — saddle-node bifurcation. Bifurcations along unstable branches are neglected.

one can see, the maximum amplitudes of the lower pendula start to diverge close to the
destabilization and the second lower pendulum has nearly twice a higher amplitude
than the first one in the Neimark-Saker bifurcation point (mi2 = maz = 0.103 [kg]).
Close to the Neimark-Saker bifurcation located on the main branch, one can ob-
serve an appearance of the second branch which starts and disappears in saddle-
node bifurcations. The stable part of this branch is bounded by the saddle-node
(m12 = mag = 0.1019 [kg]) and the Neimark-Sacker (mis = mas = 0.1047 [kg]) bifur-
cations and there is a similar difference in amplitudes between the lower and upper
pendula as for the main branch. The stability range of this separated branch in the
two-parameter space is studied in the next subsection.

The same analysis is performed for the periodic solution shown in Fig. 3(c),
which is originally unstable. In Fig. 6(a) one can see that the maximum amplitude
of the beam max y;, with decreasing masses of the lower pendula mis and mosy re-
mains zero (symmetry is maintained) in the whole range under consideration. For
mia = maoy = 0.05 [kg], we observe the subcritical pitchfork bifurcation, where sym-
metric solutions stabilize and stay stable nearly to mi3 = mas2 ~ 0.0 [kg]. The second
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Fig. 6. One-parameter path-following of the anti-phase synchronous periodic solutions from
Fig. 3(c). A change in the maximum amplitude of the beam max y, (a) and the sec-
ond upper pendulum max 112 (b) is shown for decreasing masses of the lower pendula
mi2 =€ (0.0, 1.0] [kg] (¢ = 1,2), whereas the upper pendula have masses equal to 1.0 [kg].
The black and gray lines correspond to stable and unstable periodic solutions, respectively.
The abbreviation PT corresponds to the pitchfork bifurcation. Bifurcations along unstable
branches are neglected.

branch corresponds to the asymmetric unstable periodic motion with low oscilla-
tions of the beam. All branches coming from the pitchfork bifurcation can be seen
in Fig. 6(b), where we show the maximum amplitude of the second upper pendulum
max 12. To have a general overview, we increase the masses mio and mos but the
stability properties do not change, hence the periodic solutions along all branches
stay unstable.

4.3 Ranges of stability of synchronous solutions in the two-parameter space

In this subsection, we show how asymmetric changes of pendulum masses influence
the stability of the previously present periodic solutions. In all cases we start with
the pendulum configuration obtained for the identical double pendula (configurations
from Fig. 3(a—d)). We change the mass of the second upper pendulum ms; (in different
intervals for each periodic solutions) and the masses of the lower pendula mis = mas
in the interval (0.0, 1] [kg]. Our calculations are presented on the two-dimensional
bifurcation diagrams (masses of the lower pendula mis = mas versus the mass of the
second upper pendulum meoy).

In Fig. 7(a) we show stability ranges of the configuration presented in Fig. 3(d).
The solution is bounded by the Neimark-Sacker bifurcation, hence we observe an
appearance of the quasi-periodic motion outside this range. The bifurcation scenario
which occurs for mg; = 1.0 [kg] is different from the other ones because of the pres-
ence of symmetry. The stability at the bottom is lost not via the Neimark-Sacker but
through the pitchfork bifurcation. When the symmetry is broken (m2; # 1.0 [kg]), the
pitchfork bifurcation in no more present but there exists a disconnected stable range
of periodic solutions (coming from the ‘second’ branch — see Fig. 5(c,d)). The area of
existence of these asymmetric period solutions is presented in Fig. 7(b). As shown in
Fig. 5(c,d), the stable range is bounded by the Neimark-Sacker bifurcation (from the
bottom) and the saddle-node bifurcation line from the top. This area is small and
when the difference of masses of the upper pendula (mi; and mso;) becomes larger
than a few percent, it disappears.
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Fig. 7. In (a) two-parameter continuation of the anti-phase synchronization periodic solution
(the beam is at rest - see Fig. 3(d)) for the masses m21 and m;2 € (0.0, 1.0] [kg]. The observed
stable periodic solutions destabilize thought the Neimark-Sacker bifurcations. When the
system is symmetric (m21 = 1.0 [kg]), the Neimark-Sacker bifurcation is interchanged by the
pitchfork bifurcation. In (b) two-parameter plot for the masses ms1 and m;2 € (0.0, 1.0] [kg]
of the disconnected branch (see Fig. 5(c,d)). Stable periodic solutions destabilize through
the Neimark-Sacker (continuous line) and saddle-node (dashed line) bifurcations. The gray
shaded area corresponds to the existence of stable periodic solutions, whereas the white one
to the unstable solution.

One can distinguish two types of the in-phase motion: the first one where all pen-
dula are in-phase (Fig. 3(a)) and the second one where the upper and lower pendula
are in-phase but in anti-phase to each other (Fig. 3(b)). To investigate the first type
of motion, we follow the periodic solution in the two-parameter space (similarly as
for the anti-phase motion). The results of calculations are presented in Fig. 8(a,b).
As can be easily seen, the stable area is much larger than in the previous case. So-
lutions destabilize similarly in the Neimark-Sacker bifurcations, which results in an
appearance of the quasi-periodic motion. For a decreasing mass ms;, we observe a
rapid jump around meo; = 0.5 [kg| from m;s =~ 0.08 [kg] to m;2 ~ 0.7 [kg], for an in-
crease in may, the bound of bifurcation grows nearly linearly reaching m;s = 1.0 [kg]
for ma; = 4.6 [kg]. The zoom of the majority of the left part is presented in 8(b),
where one can see that the Neimark-Sacker bifurcation line has a complex structure.
The gap for m;s corresponds to an appearance of the quasi-periodic motion in the
Neimark-Sacker bifurcation and its disappearance in the inverse Neimark-Sacker bi-
furcation.

In Fig. 8(c) we present a one-parameter plot which shows a connection between
the unstable anti-phase solution (Fig. 3(c)) and the stable in-phase solution (Fig.
3(b)). The starting solution is the unstable one (mg; = 1.0 [kg] and max y, = 0.0)
with an increasing mass, we do not observe changes in stability — the unstable branch
turns around and reaches mi2 = 0.0 [kg]. Following the second direction results in a
change of stability in the saddle-node bifurcation (ms; = 0.837 [kg]) and then desta-
bilization in the Neimark-Sacker bifurcation (mg; = 1.38 [kg]). For mo; = 1.0 [kg],
the stable solution corresponds to the solution presented in Fig. 3(b). Next, we follow
the bifurcation which bounds the stable branch in the two-parameter space (msg; and
m;2), which is shown in Fig. 8(d). The stable range stays narrow up to m;s ~ 0.3 [kg]
where the Neimark-Sacker bifurcation line changes the direction and starts to go up.
When the mass of the upper pendulum is large enough (ms; > 11.0 [kg]), we once
again can observe a stable solution for m;3 = 1.0 [kg]. From the left-hand side, as has
been mentioned before, the stable area is bounded by the saddle-node bifurcation line
and is nearly a constant line around mo; = 0.84 [kg].
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Fig. 8. In (a,b) two-parameter continuation of the in-phase synchronization periodic so-
lution (the beam is in the anti-phase state to all pendula) for the masses mo21 and
ms2 € (0.0, 1.0] [kg]. The observed stable periodic solutions destabilize through the Neimark-
Sacker bifurcation. In (c) one-parameter (ms1) plot which shows the connection between the
unstable anti-phase solution (Fig. 3(c)) and the stable in-phase solution (Fig. 3(b)), where
the gray and black lines correspond to stable and unstable periodic solutions. Then, in (d)
two-parameter plot for the masses m21 and m;2 € (0.0, 1.0] [kg]. Stable periodic solutions
destabilize through the Neimark-Sacker (continuous line) and saddle-node (dashed line) bi-
furcations. The gray shaded area corresponds to the existence of stable periodic solutions,
whereas the white one to the unstable solution.

5 Conclusions

Our studies show that two self-excited double pendula with the van der Pol type of
damping, hanging from the horizontally movable beam, can synchronize. For identi-
cal pendula, four different synchronous configurations are possible (in-phase or anti-
phase), but not all of them are stable for the given parameters of the beam. When the
pendula are nonidentical, i.e., have different masses, we observe synchronous states
for which the phase difference between the pendula is close to 0 or 7 for a small
parameter mismatch. With an increase in this difference, we observe a stable solution
with phase shifts between 0 and m. They finally destabilize in the Neimark-Sacker
saddle-node bifurcations, which results in an appearance of unsynchronized quasi-
periodic oscillations or a jump to another attractor. Similar synchronous states have
been observed experimentally in [28] but a special controlling procedure has been
applied to stabilize them.
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The observed behavior of system (1) can be explained by the energy expressions

derived in Section 3, which also show why other synchronous states are not possible.
We prove that the observed behavior of the system is robust as it occurs in a wide
range of system parameters.

This work has been supported by the Foundation for Polish Science, Team Programme under
the project TEAM/2010/5/5.
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We consider the synchronization of n self-excited double pendula. For such pendula hanging on
the same beam, different synchronous configurations can be obtained (in-phase and anti-phase
states). An approximate analytical analysis allows to derive the synchronization condition and
explain the observed types of synchronization for any number of coupled double pendula. The
energy balance method is used to show how the energy between the pendula is transferred via
the oscillating beam allowing their synchronization. We compute periodic solutions for n =
2,3,4,5 coupled double pendula, based on analytical predictions. For all obtained periodic
solutions, we investigate how the stability properties change with the varying natural frequency
of the beam.

Keywords: Double pendula; phase synchronization; synchronization in clusters.

1. Introduction

Synchronization is common state in systems of coupled oscillators.'”” The interac-
tions between connected systems often lead to oscillations where systems perform
identical dynamics or oscillate with constant phase shift. The history of synchroni-
zation goes back to the 17th century. In 1673, the Dutch scientist Ch. Huygens
observed the anti-phase synchronization of two pendulum clocks® hung on the same
wall. Recently, the dynamics of coupled pendula have been the subject of investi-
gations conducted by numerous authors.* " These studies explain the phenomenon
of synchronization, show its properties and give detailed explanation of interactions
between single coupled pendula.

In our work, we consider an interaction between two double pendula. One of the
first investigations on dynamics of the double pendulum can be found in the paper by
Rott,'® where an analytical investigation of the Hamiltonian system is presented for

*Corresponding author.
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different ratios between natural frequencies of the pendula. The next results obtained
by Miles'? describe dynamics of double pendulum under parametric excitation
around the 2:1 resonance. A mode interaction in the double pendulum, including a
detailed bifurcation analysis near two multiple bifurcation points and a transition to
quasi-periodic motion and chaos around the 2:1 parametric resonance, are presented
in Refs. 20-22. Similarly, as for 2:1, the 1:1 resonance leads to dynamics that includes
multiple bifurcation points, symmetry breaking points and cascades of period dou-
bling bifurcations.?? Double pendula can also be considered as an example of many
physical systems commonly met in engineering, e.g. a model of bridge-pedestrian
interactions,”® golf or hockey swing interactions with arms,”* human body*’ or
trunk”® models. The investigation performed for two double pendula hung on moving
beam27’28
solutions for identical pendula. Generally speaking, such systems are globally cou-
pled multi-dimensional networks, so one can expect a coexistence of multiple

show that in such a system we observe four types of different synchronous

attractors of different types (periodic, quasiperiodic and chaotic), see Refs. 10, 29-31.

In this paper, we consider the synchronization of n self-excited double pendula.
The oscillations of each double pendulum are self-excited by the van der Pol type of
damping associated with the upper parts (upper pendula) of each double pendulum.
The analytical condition which let us find the synchronous states is derived by the
energy balance method. For n = 2,3,4,5 pendula, we show possible synchronous
configurations and shape of periodic solutions. Finally, the results are generalized for
n coupled double pendula.

This paper is organized as follows: Section 2 describes the considered model of n
coupled double pendula. In Sec. 3, we show the analytical condition which let us find
synchronous states, whereas Sec. 4 presents the shape of periodic solutions, their
stability changes with the change of the beam’s natural frequency and generalization
of obtained results for an arbitrary number of coupled double pendula. Finally, we
summarize our results in Sec. 5.

2. Model of the System

The analyzed system is shown in Fig. 1. It consists of a rigid beam and n double
pendula suspended on it. The beam of the mass M can move along the horizontal
direction and its position is described by the coordinate x;. The beam is connected to
a linear spring with stiffness k, and a linear damper described by the viscous damping
coefficient c,.

Each double pendulum consists of two light beams and masses mounted at their
ends. The length of 7th upper pendulum and ith lower pendulum is given by /;; and [;5
(t=1,...,n), respectively. Masses are concentrated at the end of ith upper and ith
lower pendulum and described by m;; and m;,, respectively. We consider double
pendula with the same lengths l;; = [, = [ but different masses m;; and m; (to
maintain generality in the derivation of equations, we preserve indexes for pendula’s
lengths). The motion of each double pendulum is described by the angles ¢;;

1440028-2
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m12 m22

Fig. 1. Model of the system — n double pendula are mounted to the beam which can move horizontally.
Each double pendulum consists of an upper pendulum of the length I;; and the mass m;; and a lower
pendulum of the length I;; and the mass m;, (i = 1,...,n). The upper pendula are self-excited and lower
pendula have damper in their pivots.

(upper pendulum) and ;5 (lower pendulum). The upper pendula are self-excited by
the van der Pol type of damping (not shown in Fig. 1) given by the momentum
(torque) c,gp¢1i(1 — pup3;), where c,g, and p are constant. Stable limit cycles are
generated as a result of van der Pol damping.' The lower pendula are damped with a
viscous damper with the coefficient ¢;5. The equations of motion of the considered
system are as follows:

2 2
(M + Z Z mw) T + Z M+ Myg) i1 (Pi1 cos p; — szzl sin ;1)

i=1 j=1

+ Z Mialin(Piz COS Pia — pin SN 0i2) + kyy + ¢y, = 0,
=

. . 2.1
(M1 + Mg )lin iy cos iy + (Mg + mag)l5 P (2.1)

+ miglinlisPio cos(pi — pia) + mi2lz’1li29bz22 sin(pi — ¥i2)
+ (M1 +mgo)ligsin(p;) + cpgp(1 — 1 )@t + Ciao(@in — o) =0,
Mg lin iy COS 0 + Ml Lin D1 cos(01 — ©i2) + Mialipifrn
Ml Lin@ sin(p1 — @in) + Minlingsin(y2) — o (@i — pin) = 0,
where i = 1,...,n. Introducing the dimensionless time 7 = wt, where w? = % is the

natural frequency of the upper pendula, we can rewrite Eq. (2.1) in the dimensionless
form as:

2
Yp + Z A1 (i coshy — Py sinay)
i=1

2
» 2 .
+ Z Aip(thig costhig — Vg sinthiy) + Ky, + Cyy, = 0, (2.2)
i—1
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S5 4y 08Py + Lty + Ligthin cos(1i1 — Yi2)
.2 . .
= —Ljs¢iosin(vy — ¥i9) — Gy sin(y;1) — Cvdp(l - N%Zl)lﬁﬂ

- CZQ("sz - 77&2‘1)7 (23)

i21jp cOS ;g + Lijg %1 COS(%l - %’2) + Ljy %2

.2 ] . .
= Lizvi Sln(¢i1 - %‘2) - Gy Sm(@%) + Ci2(1/11'2 - %’1)7 (2-4>
where
(Mg + Myl Mialio k, Cy
A, = A, = = C=
7l Mlb ) 12 Mlb y Mw2 ) Mw 9
(myp +my)ly _ Myalp _ (ma + mio)l5
6i1 ) 61‘2 - 9 Lil - )
Ml Ml Lo ly M
L. — mi2lz22 o Mo liolin G. — (mil + mi2)lilg
2 — ’ i3 — ’ il — 2 )
lule lel12 l12w le
Migling Cudp Ci2
Gy = ———— C,., = d Cyg=——2—.
27 LM T G ML, N TR T e, M

3. Synchronization Condition
3.1. Synchronization condition for coupled double pendula

In this section, we show an analytical condition for synchronous solutions of coupled
double pendula (detailed analysis of two coupled double pendula is presented in
Ref. 28). The derivation of synchronization condition is shown in Appendix A. In our
analytical calculations, we assume that pendula have identical masses and lengths,
ie. my =myu =1.0kg and l;; =1; = 0.2485m (for i =1,...,n). The analytical
condition is derived assuming that in synchronous state beam is at rest. The only
exception is the case where upper and lower pendula are synchronized in phase
(the upper and lower pendulum can be either in phase or in anti-phase to each other).
For n coupled double pendula, the synchronization condition has the following form
(see Eq. (A.39) in Appendix A):

sin(fy; — B11) +sin(Bsy — B11) + - +sin(B;y — B11) =0

sin(f1; — Ba1) +sin(Bsy — Bo1) + - +sin(B;y — Byn) =0
(3.1)

sin(B11 — Bi1) +sin(By — Bin) + -+ +sin(Bi_11 — Ba) =0
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for ¢ =1,...,n. This condition can be simplified using trigonometric identity:
sin(a; — ay) = sin ay cos ap — €os o sin y:

k=n k=n
cos 11 (Z sin B, — sin 511> — sin By (Z cos 31 — cos 611> =0
k=1

cos By <

k=n k=n
cos 3,1 <Z sin 31 — sin 6n1> —sin B3 (Z cos By, — cos ﬂm) =0.
k=1 k=1

For n =2, condition (3.2) has only two solutions: (i; =y =0V (3 =
0 A B9; = m, i.e. upper pendula are in phase or anti-phase synchronization, the lower

Eod
—_

i
3

k

I
B

sin (3),; — sin 621> — sin By ( cos [3;,; — cos 521) =0

ol
—_

k=1

(3.2)

pendula can be in both cases in-phase or in anti-phase to upper pendula (see Figs. 2
(a) and 2(b)).
For n = 3, Eq. (3.2) take the form:

cos (311 (sin Byy + sin B31) — sin By (cos By; + cos fB1) = 0
cos (391 (sin 811 + sin B31) — sin By; (cos By + cos fBs;) = 0,
cos (31 (sin B11 + sin By;) — sin B3y (cos Byy + cos fFyy) = 0

— 4m

Therefore, the possible solutions are as follows: 5;; =0A By = 2{ A B3 ==F or

Y

3
B11 = PBa1 = (31. Hence, four different configurations, that are presented in
Figs. 2(c)-2(f), can appear.
For n = 4, system (3.2) takes the form:

cos (311 (sin Byy + sin B3y + sin By1) — sin By (cos By + cos B3y + cos Byq)
cos (91 (sin G171 + sin B3 + sin By ) — sin Byq(cos Bq1 + cos B3 + cos By1) =
cos (331 (sin B11 + sin Byy + sin By1) — sin B3y (cos By; + cos Bay + cos Byq)

Its solutions give us the following phase shifts: Gy = B2y = 0A B3y = B4 = 7 or
811 = (91 = (31 = B41- The lower pendula can be in phase or in anti-phase to the
upper pendula. The possible configurations are shown in Figs. 2(g)-2(j). In case
when the number of pendula is greater than four, even one can even observe the anti-
phase synchronization in pairs. In each pair, because of the anti-phase motion, forces
acting on the beam cancel themselves, hence the beam stays at rest. There is no
assumption on the phase shift between pairs of double pendula, hence it can be any
number from 0 to 27.
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Fig. 2. Synchronous states of the system (2.2)—(2.4): (a), (b) for n = 2 coupled double pendula: (a) upper
and lower pendula in phase: 811 = B9 and 319 = (49, (b) upper and lower pendula in anti-phase: 3;; =
—fo1 and 15 = —fa9; (¢)—(f) for n = 3 coupled double pendula: (¢), (d) upper and lower pendula in phase:
B = Por = 531 and Big = By = 5327 (e), (f) upper and lower pendula shifted by 2% 3, = 0A By =
2N By =4 and B1 = 0 A Bog = Z A B39 =4 (g)—(j) for n = 4 coupled double pendula (g), (h) upper
and lower pendula in phase: 8;; = 521 = (31 = By and Biy = Poy = B33 = Bag, (1), (j) upper and lower
pendula in anti-phase in pairs: 811 = —f31, 821 = —B41 and B = —SB3, Bog = —Baz; (k)~(p) for n =5
coupled double pendula: (k), (1) upper and lower pendula in phase: 31; = By = 31 = a1 = P51 and
Bia = Pos = B39 = Bus = Bs2, (m), (n) upper and lower pendula synchronized in phase in two anti-phase
clusters, (o), (p) upper and lower pendula shifted by 2% 81} = 0A By =25 A 3 =4 A By =N 35 =
B and B1p = 0N fog = 2N B3y = ENBao =LA By =5

(a)

(

(
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For n = 5, system (3.2) has the following solution:

cos (11 (sin By + sin B3y + sin By + sin By )
— sin (11 (cos By1 + cos B3 + cos By + cos fB51) = 0,

cos 3y (sin By; + sin B3y + sin By + sin B, )
+ sin By (cos B11 + cos B31 + cos By + cos f51) = 0,

cos (31 (sin By; + sin By + sin By + sin B, )
— sin B3y (cos By 4 cos By + cos By + cos B51) = 0,

cos B34 (sin By; + sin By + sin B3y + sin G, )
— sin B41(cos By1 + cos By + cos 331 + cos B51) = 0,

cos (351 (sin B1; + sin By + sin By + sin Gy;)
— sin (5 (cos B11 + cos By + cos B3 + cos B41) = 0.

Hence, the synchronization condition takes the form: (;; =0 Asinfy+
sin 831 + sin 341 + sin B5; = 0. That implies the flowing solutions: 35 = 0 A (3 =
OABn =0ABs =0 or By =0ABy =27ABy =27 ABy =%7AB5 =287 or
combinations when two double pendula are in anti-phase synchronization and three
are shifted by 27/3 (see phase shifted state of three coupled double pendula). All
described configuration are presented in Figs. 2(k)-2(p).

3.2. Synchronization condition for n number of coupled pendula

According to detailed analysis of synchronization in system of n = 2,3,4,5 coupled
double pendula we can generalize obtained results for an arbitrary number n of
systems. Despite the value of n we can observe the state where all double pendula are
synchronized in phase which means that all upper and similarly all lower pendula are
completely synchronized. They act on the beam causing its oscillations. Considering
other possible configurations we have to recall our assumptions which are used to
derive the analytical condition of synchronization: the beam is at rest and double
pendula perform harmonic motion. As it is shown in Figs. 2(m) and 2(n) double
pendula can group in clusters. The minimum number of double pendula in cluster is
two because for two and more double pendula in cluster, forces acting on beam
vanish. As clusters are not acting on one another via the beam, the phase shift
between clusters can be an arbitrary number from 0 to 27. The number of double
pendula in each cluster is a prime number because any other number can be
expressed as a sum of prime numbers.?* The phase shift between double pendula in
cluster is 27 /n;, where n,; is a number of double pendula in the cluster (n, is a prime
number). For example, for n = 11, we can observe the following numbers of double
pendula in clusters: (3,2,2,2,2) or (3,3,3,2) or (5,3,3) or (5,2,2,2) or (7,2,2) or
(11). Note that (9,2) is not a possible solution — the cluster of nine double pendula
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can be created from three clusters with three pendula shifted by 27/3. The formula
which let us calculate the number of possible configurations is complex,** hence it is
better to base on an algorithm (see Appendix B) which gives us explicit results
(number of clusters and number of double pendula in each cluster). As soon as we do
not consider a large n, the time of calculation is short. The number of possible
clusters grows much faster than the number n of double pendula (the tendency is
close to exponential), e.g. for n = 10 (5 clusters), n = 30 (98 clusters), n = 60 (2198
clusters), n = 90 (38,257 clusters), n = 120 (145,627 clusters). Additionally, when
number of double pendula is a prime number we have a case where double pendula
are equally distributed with phase shift 27/n, so for our example with n = 11 double
pendula we observe a seventh possible configuration. When number of double pen-
dula is not a prime number such configuration can only be created from other clusters
with properly chosen phase shifts between clusters, e.g. for eight double pendula,
configuration consists of four clusters each with two pendula (2, 2,2,2) with exactly
7/4 phase shift between clusters give equally distributed eight double pendula.
Moreover, for all mentioned above types of synchronization in each double pendulum
the upper and lower pendulum can be synchronized in phase or anti-phase, hence
the number of possible synchronous states is two times bigger than the number of
possible clusters.

4. Numerical Results

In this section, we show the shapes of possible periodic solutions and analyze their
stability. Numerical calculations are performed using the Auto 07p** continuation
toolbox. Auto07p lets us obtain periodic solutions of the system independently on
their stability. To start continuation we need to have periodic solutions, hence each
periodic solution is firstly calculated by numerical integration using the fourth-order
Runge-Kutta method and then corrected by applying Newton—Raphson scheme in
Auto07p. In our numerical studies, we use the following parameters of Eqs. (2.2)—
(2.4): my; =my, =1.0kg, M =10.0kg, l;; =15 =0.2485m, k, =4.0N/m, c, =
1.53Ns/m, ¢, = —0.1Ns/m, p =60.0m 2, ¢;p = 0.0016 Ns/m, which yield the
following dimensionless coefficients: for n = 3: A;; = 0.031063, A, = 0.015531, 6,; =
0.125000, 6;5 = 0.062500, L;; = 0.031063, L;; = 0.015531, L;3 = 0.015531, G;; =
0.031063, Gj, =0.015531, C,4 = —0.004003, C;, =0.000063, C = 0.015219,
K =0.00633; for n=4: A, =0.027311, A;; = 0.013806, 6,; = 0.111111, 6;5 =
0.055556, L;; = 0.027611, L, = 0.013806, L;; = 0.013806, G;; = 0.027611, G, =
0.013806, C,4, = —0.003558, C;, = 0.000056, C = 0.013528, K = 0.005629; and for
n=>5 A;; =0.024850, A;, =0.012425, 6;; = 0.100000, &, = 0.05000, L, =
0.024850, L, =0.012425, ©L;3 =0.012425, G,; =0.024850, G,, = 0.012425,
C,qp = —0.003202, C;5 = 0.000050, C = 0.012176, K = 0.005066 (i = 1,...,n). Our
bifurcation parameter is the mass M of the beam. To hold an intuitive physical
interpretation, we change dimensional mass, but all the calculations are performed
for dimensionless equations.
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4.1. Shape of periodic solutions

The shapes of periodic solutions of two self-excited double-pendula and detailed
analysis of their stability are presented in our previous paper,”® hence we do not
present the results here. Shapes of periodic solutions for four coupled double pendula
are nearly the same as for two coupled double pendula (periods are slightly different
because of different ratio between mass of the beam and masses of the pendula).
In Fig. 3, we show shapes of four different periodic solutions for three coupled
double pendula. In Fig. 3(a), one can observe a case where all pendula are syn-
chronized in-phase, while beam is moving in anti-phase to them. Hence, the time
traces of two lower and two upper pendula overlap. In Fig. 3(b), the upper and lower
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Fig. 3. Pendula and beam displacements for one period of motion (N = 1) for four different periodic
solutions assuming identical masses of the n =3 coupled double pendula: m; = m; = 1.0kg
(¢=1,...,n). The displacement y, of the beam is shown 10 or 100 times magnified. (a) pendula config-
uration from Fig. 2(c) with the period T' = 6.89, (b) pendula configuration from Fig. 2(d) with the period
T = 3.53, (c) pendula configuration from Fig. 2(e) with the period T' = 8.28, and (d) pendula configuration
from Fig. 2(f) with the period T = 3.77.
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pendula are in anti-phase and the beam is moving is in phase with lower pendula.
The next synchronous state is observed when pendula are shifted by 27/3, where we
also observe two cases presented in Fig. 3(c) (upper and lower pendula are in-phase)
and in Fig. 3(d) (upper and lower pendula are in anti-phase). One can see that the
period of the beam is three times shorter than the period of the pendula, hence the
beam performs three full periods of motion every one period of the whole system. It is
worth to notice, that contrary to even number of double pendula case, for odd
number of double pendula the beam is always oscillating. For equally phase shifted
double pendula (by 27/3), the amplitude of the beam is approximately 10 times
smaller than for in phase synchronization. The oscillation of the beam for phase
shifted cases is observed because periodic solutions of each pendulum is not

v; 0.5 v; 0.3
Y, 0.4} Ys
03 0.2
02t 01
0.1
0.0 § 0.0
0.1
02+ -0.1
0.3 02
04t
0.0 0.5 N 1.0 030
(a) (b)
v, 04— v, 0.4
Yo 0.3 V=Y Yo 0.3
0.2 Wiu=Va Vi=Va 02 V=, T
0.1 0.1 L
0.0 0.0
100y/
0.1 -0.1
0.2 0.2
-0.3 -0.3 V=Y,
04""@---- 04—
0.0 0.5 N 10 0.0 0.5 N 1.0
(c) (d)

Fig. 4. Pendula and beam displacements for one period of motion (N = 1) for four different periodic
solutions assuming identical masses of the n =4 coupled double pendula: m;; = m; = 1.0kg
(t=1,...,n). The displacement y;, of the beam M is shown 10 or 100 times magnified. (a) pendula
configuration from Fig. 2(g) with the period T' = 6.65, (b) pendula configuration from Fig. 2(h) with the
period T = 3.48, (¢) pendula configuration from Fig. 2(i) with the period T' = 3.75, and (d) pendula
configuration from Fig. 2(j) with the period T' = 8.22.
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harmonic, hence the reacting forces acting on the beam do not vanish. This property
is visible in Fig. 3(d) where solutions are closer to harmonic ones than in Fig. 3(c),
resulting in twice smaller amplitude of the beam.

The shapes of synchronous periodic solutions for n = 4 coupled double pendula
are presented in Fig. 4. As we mention before they are nearly the same as for two
coupled double pendula (see Ref. 28). In Figs. 4(a) and 4(b) we show in-phase mo-
tion of double pendula — in Fig. 4(a) the pendula in each double pendulum are
in-phase while in Fig. 4(b) they are in anti-phase. As always, for this type of syn-
chronous motion the beam is oscillating. In Figs. 4(c) and 4(d) double pendula are
grouped in two pairs (in each pair there are two anti-phase synchronized double

(a) (b)
OO b i i
5 /\V/@V/‘\V‘\V/ 0999,
oty
YAV IR
OOV ONIED O ®.OW;

(©) (d)

Fig. 5. Pendula and beam displacements for one period of motion (N = 1) for four different periodic
solutions assuming identical masses of the n =05 coupled double pendula: m; = m; = 1.0kg
(¢=1,...,n). The displacement y, of the beam M is in (b)—(d) magnified. (a) pendula configuration from
Fig. 2(k) with the period T = 6.44, (b) pendula configuration from Fig. 2(1) with the period T' = 3.42, (c)
pendula configuration from Fig. 2(m) with the period T'= 3.77, (d) pendula configuration from Fig. 2(n)
with the period T = 8.25, (e) pendula configuration from Fig. 2(o) with the period T'= 8.25 and (f)
pendula configuration from Fig. 2(p) with the period T' = 3.83.
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Fig. 5. (Continued)

pendula). Generally, there is no assumption on phase shift between pairs — it can be
an arbitrary phase angle form 0 to 27, because the reacting forces that act on the
beam annul themselves in each pair. This implies that for even number of double
pendula (n > 4) we observe infinite number of possible synchronous configurations.

For n = 5, we obtain six possible synchronous states which are shown in Fig. 5. In
Figs. 5(a) and 5(b) we show the in-phase synchronization of double pendula — in
Fig. 5(a) the pendula in each double pendulum are in phase while in Fig. 5(b) they
are in anti-phase. One can see that when the mass M of the beam is constant the
increase of the number of double pendula results in the growth of the beam and
pendula amplitudes. By changing the mass M of the beam, one can obtain the same
amplitude of system’s motion for any number of coupled pendula.

In Fig. 5(c), we show the solution where pendula are equally distributed in phase
space (shifted by 27/5) and in each double pendulum we observe in-phase syn-
chronization between upper and lower pendula. The second configuration of equally
phase distributed pendula is presented in Fig. 5(d) where in each double pendulum
we observe anti-phase synchronization between upper and lower pendulum. Com-
paring both figures with Figs. 3(c) and 3(d) we notice that amplitudes of beam
are much smaller. Hence, the increase in the number of coupled double pendula
reduce the beam amplitude. Therefore, we assume that when n is odd number and
n — oo the amplitude of beam tends to zero (maxy;, — 0). In Fig. 5(e), we show
synchronization in two clusters, i.e. two double pendula are in anti-phase synchro-
nization and three are equally distributed in phase space (phase shift 27/3). The
same type of solution is presented in Fig. 5(f) but in each double pendulum pendula
are in anti-phase configuration. The anti-phase pair (cluster consists of two pendula)
do not act on the motion of the beam (no resultant force). The motion of the beam is
governed by the dynamics of three double pendula cluster, hence the beam is per-
forming three periods of motion for one period of system (similarly as for three
coupled systems).
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4.2. Stability of periodic solutions

In this section, we show how the change in the natural frequency of the beam affects
the stability of obtained periodic solutions. We present one-parameter bifurcation
diagrams calculated using AUTO-07p. We choose the beam mass M as the bifur-
cation parameter and vary it in the range from 0.01 kg to 80.0 kg (in some plots we
reduce the range to 20.0kg or 50.0 kg because for larger masses of the beam the
stability does not change). In all plots on the vertical axis we show the maximum
amplitude of the beam max ;. The black dots in figures mark the starting point of
calculation — from this point we follow the solution in both directions — in-
creasing and decreasing the mass M of the beam (we start form periodic solutions
presented in previous subsection). The changes in line types of branches of periodic
solutions correspond to changes of stability, i.e. the black solid line of branches
mean that periodic solutions are stable and black dashed that the solution is
unstable.

In Fig. 6, we show bifurcation diagrams for three coupled double pendula.
We observe changes in stability properties of all considered periodic solutions.
Figure 6(a) shows periodic solutions where all pendula are in-phase (see Fig. 3(a)).
One can see that with the decrease of beam’s mass, solutions along the branch are
stable up to Neimark-Sacker bifurcation (for M = 4.3kg) when they become un-
stable. With increasing mass M, we do not notice any change in stability. The
similar scenario occurs for periodic solution presented in Fig. 3(b) — the destabi-
lization takes place for M = 2.71kg. Subsequent subplots — Figs. 6(c) and 6(d)
present continuation of the solutions from Figs. 3(c) and 3(d) where double pendula
are shifted by 27/3. For periodic solution shown in 6(c) the starting orbit is un-
stable, we observe the stabilization in Neimark—Sacker bifurcation for M = 1.54 kg.
For the second branch (Fig. 6(d)) we start from the stable solution and it remains
stable up to M = 61.48 kg. In both branches the increase of beam’s mass M causes the
decrease of its amplitude (max y;). As one can notice the varying natural frequency of
the beam changes the stability of solutions and there is no value of M for which all of
them are stable. The maximum number of stable coexisting solutions is three and
minimum is one, hence parameter M is crucial to obtain given periodic solution.

Figure 7 is devoted to stability analysis of periodic solutions obtained for four
coupled double pendula. We present only branches of periodic solutions for which we
observe changes in stability. We do not show continuation of orbits presented in
Figs. 4(b) and 4(d) because they are stable in the whole considered range of the mass
M of the beam. In Fig. 7(a), we start from solution presented in Fig. 4(a). Similarly
to previous in phase solutions this branch is stable when mass M of the beam
increases, but with decreasing mass M it becomes unstable in the Neimark—Sacker
bifurcation for M = 4.77 kg. The starting point of the branch presented in Fig. 4(b)
corresponds to periodic solution shown in Fig. 4(c).

At the beginning, the branch is unstable (around black dot), then for M = 3.8 kg
in the symmetry breaking pitchfork bifurcation we observe an appearance of three
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Fig. 6. One-parameter path-following of periodic solutions for the varying mass M of the beam for n = 3
coupled double pendula: (a) in-phase motion from Fig. 3(a), (b) anti-phase motion from Fig. 3(b), (c) the
equally spaced motion with phase shift 27r/3 between double pendula with in phase motion from Figs. 3(c)
and 3(d) the equally spaced motion with phase shift 27/3 between double pendula with anti-phase motion
in each double pendulum from Fig. 3(d). The black solid and black dashed lines correspond to stable and
unstable periodic solutions, respectively. The abbreviation NS stands for the Neimark—Sacker bifurcation
and PT denotes the pitchfork bifurcation. Bifurcations along unstable branches are neglected. The starting
points of continuation are marked by black dots.

stable branches — one symmetric (the beam stays unmovable) and two asymmetric
periodic solutions (the lines presenting amplitudes of beam overlap for them, so we
just see one curve). The asymmetric branches lose stability simultaneously in Nei-
mark—Sacker bifurcations for M = 4.1kg. The further increase of mass M along
branches corresponding to asymmetric solutions cause decrease of beam’s amplitude.
Shapes of asymmetric orbits are similar to those for single pendula — both solutions
are shifted — one in clockwise and the other in counter clockwise direction from

hanging down position of pendulum.
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Fig. 7. One-parameter path-following of periodic solutions for the varying mass M of the beam for
n = 4 coupled double pendula: (a) in-phase motion from Fig. 4(a), (b) motion of double pendulum from
Fig. 4(c). The black solid and black dashed lines correspond to stable and unstable periodic solutions,
respectively. The abbreviation NS stands for the Neimark—Sacker bifurcation and PT denotes the pitch-
fork bifurcation. Bifurcations along unstable branches are neglected. The starting points of continuation
are marked by black dots.

The solutions obtained for five coupled double pendula are mostly unstable.
Branches which starts from orbits presented in Figs. 5(c)-5(e) are unstable in the
whole considered range of parameter M. Contrary, the solution shown in Fig. 5(b)
remains stable. Because of that we do not present their bifurcation diagrams. First
form remaining solutions is a periodic orbit shown in Fig. 5(a)), its bifurcation

0.07 0.012
max y, max y,
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0.05¢ |
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0.04t ! .
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(a) (b)

Fig. 8. One-parameter path-following of periodic solutions for the varying mass M of the beam for n =5
coupled double pendula: (a) in-phase motion from Fig. 5(a), (b) the equally spaced motion with phase shift
27/5 between double pendula with in phase motion from Fig. 5(f). The black solid and black dashed lines
correspond to stable and unstable periodic solutions, respectively. The abbreviation NS stands for the
Neimark—Sacker bifurcation and PT denotes the pitchfork bifurcation. Bifurcations along unstable
branches are neglected. The starting points of continuation are marked by black dots.
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digram is presented in Fig. 8(a). Starting from stable solution (black dot) it becomes
unstable with decreasing mass of the beam in Neimark—Sacker bifurcation for
M = 4.97kg. Increase of beam’s mass causes only slow decrease of its amplitude.
Interesting behavior can be observed for synchronization in two clusters with anti-
phase synchronization in each double pendulum (see Fig. 5(f)). We start continua-
tion from unstable solution, which in symmetry breaking pitchfork bifurcation for
M = 9.37 kg divides into three branches — the symmetric branch stays unstable and
two asymmetric branches become stable (curves overlap as for four double pendula).
Both asymmetric branches merge with symmetric one for M = 3.21 kg in the inverse
pitchfork bifurcation.

5. Conclusion

In this paper, we show different synchronous solutions which exist in the system of n
coupled double pendula suspended on the beam. We derive the analytical condition
which enable calculation of the possible periodic solutions for any number of double
pendula. For each periodic solution obtained from derived condition, we observe two
states of synchronization between pendula in each double pendulum (upper and
lower pendula are in phase or anti-phase). The number of possible configurations
grows with the number of coupled pendula. We show shapes of periodic solutions for
n = 3,4,5 coupled double pendula, which can be stable or unstable depending on
system’s parameters. We examine how stability of each considered periodic solution
changes with varying natural frequency of the beam. Using path-following toolbox
Auto07p we detect all types of bifurcations along the branches of analyzed periodic
solutions. In the considered system, the typical bifurcation that stabilizes/destabi-
lizes periodic solutions is a Neimark—Sacker bifurcation. Hence, we observe appear-
ance or disappearance of quasiperiodic oscillations. Moreover, by the proper choice of
beam’s mass parameter one can ensure that only selected solutions are stable. We
claim that obtained results give a good overview of the dynamics of systems with
coupled double pendula, and show that stability of such systems is strongly depen-
dent on natural frequency of the beam. Therefore, to obtain desired synchronous
state one has to adjust beam’s natural frequency.
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Appendix A

In this appendix, we derive an analytical condition for the double pendula
synchronization in the considered system. We base on energy balance method and
assumption of small oscillation of the pendula.
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A.1. Equation of the beam motion

Assuming that the double pendula are identical and perform periodic oscillations
with the frequency wy and low amplitudes, one can describe displacements, velocities
and accelerations of the upper and lower pendula in the following way:

Yy = O, sin(wr + By), (A1)

w'l-j = w®;; cos(wr + B;;), (A.2)

z'p'ij = —w?®;;sin(wr + G;) (A.3)

fori =1,...,n and j = 1,2, where ®;; are amplitudes and (3;; are phase difference

between pendula
Equation (2.2) allows to estimate the force generated by the pendula that acts on
the beam:

= —Z A1 (¢ cos y — wfl sin ) — Z Ay (i cos g — wfz sin ;). (A.4)
i=1 i=1

Substituting Eqgs. (A.1)-(A.3) into Eq. (A.4) and considering the relation
2

cos“asina = 0.25sin a + 0.25 sin 3, one gets:
n 2
F = Z Ajjlw ®;(1+0. 25(1)13) sin(wr + B;)
i=1 j=1
+w <I>ij0.25 sin(3wr + 353;5)]. (A.5)

Substituting Eq. (A.5) in the equation of the beam’s motion (2.2) we have:

iy + Ky + Cyy, = Z Z Ajlw 2<I>Zj (1+ 0.25@?]-) sin(wr + 6;;)

i=1 j=
+ w?®,0.25 sin(3wr + 38;)]. (A.6)

Assuming that damping coefficient C is small, one gets:

2 2
Z Z XA sin(wr + B;;) + Z Z XAy sin(3wr + 35;5),

=1 j= i=1 j=1

. (A.7)
= Z Z AleA SlIl wT —|— ﬂ”) + Z Z 9A3UA SlIl 3UJT + 36”),
1=1 j= =1 j=1

where

. w2®;;(1+0.2507)) 025020

1 K — w2 K —9w? (A8)
—wt®;;(1+0.2597)) —0.25w4®;
Avg = K — w2 ST UK —w?
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Equation (A.7) represent the displacement and the acceleration of the beam with
mass M respectively.

A.2. Energy balance of the system
Multiplying Eq. (2.2) by the velocity of the beam ¢;, we obtain:

n
iy + Ky, = —Cry — Z A (Yinyp cos i — Yy siny)
=1

n N .2
- Z Aip(Vigyy 08 thig — Yoy sin ). (A.9)
i=1

Assuming that the motion of the pendulum is periodic with period T' (T' = 27/w) and
integrating Eq. (A.9), we obtain the following energy balance:

T T
/ UpypdT + / Kypypdr
0 0

T T 2 2 .. .2
= —/O Cy’%dT—/O Z (ZAM(%J'COS%;'—lbijSiHT/}ij))yde- (A.10)
= \'=1

The left-hand side of Eq. (A.10) represents the increase in the total energy of the
beam which for the periodic oscillations is equal to zero:

T T
/ gby.de + / Kybyde = 0 (All)
0 0

The first component of the right-hand side of the Eq. (A.10) represents the energy
dissipated by linear damper C

T
WPAMP / Cyidr (A.12)
0

while the second component represents the work performed by horizontal compo-
nents of the force generated by the double pendula that acts on the beam and causing
its motion:

T 2 n
.. .2 i
W&EEIYE = —/0 Z <Z Aij(wij cos P;; — Py sin ¢ij)>ybd7'- (A.13)
j=1 \li=1

Substituting Egs. (A.12) and (A.13) to Eq. (A.10) we get:

R (A1)

1440028-18



Int. J. Str. Stab. Dyn. Downloaded from www.worldscientific.com
by Dr Przemyslaw Perlikowski on 08/06/14. For personal use only.

Dynamics of n Coupled Double Pendula Suspended to the Moving Beam

Multiplying the equation of the upper pendulum Eq. (A.2) by velocity ¢, we
obtain:

S5 dinthin cos iy + Ly it + Ligthintha cos(i1 — Yiz)
= - Li3¢.i1¢.?2 Sin(%‘l - %‘2) - Gilw.il Sin(wil)
— Cyp(1 — /“pzzl)l/}?l + Cin(ia — thin )i (A.15)

Assuming that the oscillations of the pendula are periodic with period 7" and
integrating Eq. (A.15), one obtains the following energy balance:

T T
/ L, ¢¢1¢¢1d7+/ G 1y sin by dr
0 0
T . T . .9
= —/ 0i19p i1 cos Y dr —/ Li3(wi1¢i2 Sin(¢i1 - %‘2)
0 0
T

T
o .2 2
+ Yigthin cos(i — Vyp))dT — / Cogpindr +/ Cvdpl“ﬂ?ﬂ/}ﬂdT
0 0

T .. T .2
+/ 012%2%10”—/ Ciotpjdr. (A.16)
0 0

The left-hand side of Eq. (A.16) represents the total energy of the upper pendula
which in the case of periodic oscillations is equal to zero:

T T
/ Lil fﬁ.ﬂwﬁdT + / Gilllp.il sin 'Lbild’r =0 1= 1, 2. (A17)
0 0

The first component of the right-hand side of Eq. (A.16) represents the energy which
is transferred to the beam:

T
WiSIYN = / i1 Zi/.bd}il oS Yy d. (A.18)
0
The second component describes the energy which is transferred to lower pendulum:
SYNP T . .9 I
Wi = —/ Lis(¥i g sin(vin — thin) + Yigthin cos(¥y — ¥y0))dr (A.19)
0

and the third component describes the energy, which is supplied to the system by van
der Pol damper in one period of oscillations:

T
' .9 ..
WZJ?AMP _ —/ (Cvdp + Ci2)Vi1 — Cipppthdr. (A.20)
0

Finally, the last component represents the energy dissipated by van der Pol damper:

T
.2
JWSELE _ _ / HC oy B0 (A.21)
0
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substituting Eqgs. (A.18)—(A.21) to Eq. (A.16), we obtain the following relation:
Wit —wIN W WM =0 fori=1,....n.
Multiplying the equation of the lower pendulum Eq. (2.4) by velocity v);,, one gets:
bio gb%& o8 ;g + L3 %1 w.z‘z cos(Vi1 — o) + Lo 1/%‘2 %2
= Ligtathio sin(y; — o) — Gigthpo sin(vn) — Cia (Vi — i1 )ia- (A.22)

Assuming that the oscillations of the pendulum are periodic with period 7', the
integration of Eq. (A.22) gives the following energy balance:

T T
/ Lisioiedr + / Go o sin(1e)dr
0 0
T . T .92 .
= —/ Bialip1ia €OS ;0dT +/ Li3(¢i1¢i2 Sin(%‘l - %‘2)
0 0
T

oo, T .9 ..
— i11ig cos(Vy —¢i2))d7+/0 Ci2¢i2d7—+/0 Cio Vi Vipdr. (A.23)

The left-hand side of Eq. (A.23) represents the total energy of the lower pendu-
lum which in case of periodic oscillations is equal to zero

T T
/ Lyt thindr +/ G sin(vp)dr =0 i=1,2. (A.24)
0 0
The first component of the right-hand side of Eq. (A.23) represents the energy which

is transferred to the beam via the upper pendulum or to the next pendulum via the
upper pendulum and the beam:

T
WiSQYN = / 51‘2%?/;@'2 oS P;odT (A-25>
0

The second component describes the energy which is transferred to the upper
pendulum:

T
.9 . . ..
WgYNP = —/ Lis(Yitir sin(P — tin) — i hip cos(Py — ip))dr (A.26)
0
and the last component represents the energy dissipated by the damper:
A ) T . . .
Wzg M= —/ Cia(Vin — i )biodr. (A.27)
0

Substituting Eqgs. (A.25)—(A.27) to Eq. (A.23), one obtains the following relation:
JEYNP _ pprSYN | g DAMP _

where 1 =1,... n.
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A.3. Synchronization between the upper and lower pendula

The energy transferred from the upper to the lower pendulum is given by:

Wit = - /OT Lis(i2 cos(¢ — ¥2) + %22 sin(yy — i) dr (A.28)
and the energy transferred from the lower to the upper pendulum as:

Wy = - /OT Lis(i1 cos(thir — ti2) — 1/1121 sin(y;; — i) Prdr (A.29)
Taking into account Egs. (A.1)—(A.3) and Eq. (A.29) takes the form:

T
Wz'leNP = —L;3 / (—w? @y sin(wr + Bj2) cos(P;y sin(wr + By1)
0

— @y sin(wr + Bo)) + WQq)zzzCOSQ(WT + Bi2) sin(®;; sin(wr + §;1)
— ®i2 Sin(u}T + ﬁ22>))w¢11 COS(CUT + ﬂz‘l)d’r
= Li37W2(I)i1 ) Sin(ﬁw - 51'1) (A-30)

and
WiSQYNP = Li37rw2q)i1 D9 Sin(ﬁﬂ - @'2) = —WileNP- (A-31)

The synchronization between the lower and upper pendula occurs when:

WZ'SIYNP =0= Sin(ﬁil — 512) =0. (A32)
The condition (A.32) is fulfilled when:
Bin = Bia V (B =0 A B = m). (A.33)

In the first case, the oscillations of the upper and lower pendula are in-phase, i.e. the
pendula move in the same directions, whereas in the second case they are in anti-
phase, i.e. the pendula move in the opposite directions. For low oscillations, limit
conditions (A.33) define two normal modes of oscillations.

A.4. Synchronization between the upper pendula

In each equation of the pendulum’s motion, there is a component influencing the
beam’s motion

MZ'S‘jYN = 67,jyb COS wl]’ (A34)

which is called the synchronization momentum (torque). The work done by this
momentum during one period is equal to zero.

T
Wi = / 81y cos Py ibydt = 0 (A.35)
0
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substituting Eqs. (A.7), (A.1) and (A.2) into (A.35) and performing the lineariza-
tion, we arrive at:

n 2
Wiy = ¢6,®y O, M;sin(B; — Bu)| =0 k=1,...,n1=1,2, (A.36)
i=1 j=1
where
P N VY
= ) i1 — \my Mg )bi1,
Mi,(K — w?) bR (A.37)

My = mplyy,  ©;; = ®4(1+0.250%)

and n is number of double pendula.

Equation (A.36) allow the calculation of phase angle 3;; for which the synchro-
nization of the periodic pendula oscillations occurs. We assume that pendula are
identical, hence we can introduce the following substitution:

A = @ZlMﬂ? B = ®i2Mi2 fOI' 7= 1, NN (A38>

The synchronization between lower and upper pendula can either be in phase
(B;1 = Bi) or in anti-phase (8;; — B2 = 7). In both cases the condition sin(3;; —
Bio) = 0 is fulfilled. That allows to rewrite Eq. (A.36) in simpler form:

(A+ B)[sin(By1 — B11) +sin(Bsy — Bi1) + -+ - +sin(B;; — f11)] =0

(A + B)[sin(B11 — Bo1) +sin(Bs1 — Bo1) + - - +sin(By — ) =0
(A.39)

(A + B)[sin(B11 — Bi1) +sin(By — Bi1) + - +sin(Bi_11 — Bin)] =0

fori=1,...,n.
Equation (A.39) can be divided by (A + B) which gives us the condition for
synchronization between the upper pendula.

Appendix B

Code*® in Mathematica which let us calculate number of possible clusters and
number of pendula in each cluster:

f[n-] := Length@IntegerPartitions[n, All, Prime@Range@PrimePi@n];
w|n-] := Select|[IntegerPartitions[n], And Q@ PrimeQ/Q # &];
number = 21;

flnumber]

w[number]
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1. Introduction

Groups of oscillators are observed to synchronize in a diverse variety of systems [1,3,15,18,24-26], despite the inevitable
differences between the oscillators. Synchronization is commonly the process where two or more systems interact with each
other and come to oscillate together. The history of synchronization goes back to the 17th century when Ch. Huygens ob-
served weak synchronization of two pendulum clocks [9]. Recently the phenomenon of the synchronization of the clocks
hanging on a common movable beam has been the subject of research by a number of authors [2,4-8,10-14,16,17,19-
21]. These studies have explained the phenomenon of synchronization of a number of single pendula. The problem of the
synchronization of double pendula is less investigated. Fradkov et al. [22] developed the control system which allows the
experimental synchronization of two double pendula. The occurrence of the synchronous rotation of a set of four uncoupled
nonidentical double pendula arranged into a cross structure mounted on a vertically excited platform has been studied in
[23]. It has been shown that after a transient, many different types of synchronous configurations with the constant phase
difference between the pendula can be observed.

In this paper we consider the synchronization of two self-excited double-pendula. The oscillations of each pendulum are
self-excited by the escapement mechanism associated with the lower parts (lower pendula) of each double-pendulum. We
show that two such double-pendula hanging on the same beam can synchronize both in phase and in antiphase. We give
evidence that the observed synchronous states are robust as they exit in the wide range of system parameters and are pre-
served for the parameters’ mismatch (the pendula with different lengths are considered). The performed approximate ana-
lytical analysis allows to derive the synchronization conditions and explains the observed types of synchronizations. The
energy balance in the system allows to show how the energy is transferred between the pendula via the oscillating beam.

This paper is organized as follows. Section 2 describes the considered model of the coupled double pendula. In Section 3
we derive the energy balance of the synchronized identical pendula. Stable synchronous configurations of double pendula
have been identified in Section 4. Section 5 presents the results of our numerical simulations and describes the observed
synchronization states. Finally, we summarize our results in Section 6.

* Corresponding author. Tel.: +48 426312231.
E-mail addresses: tomasz.kapitaniak@p.lodz.pl, tomaszka@p.lodz.pl (T. Kapitaniak).

1007-5704/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cnsns.2013.08.008
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2. The model

The analyzed system is shown in Fig. 1. It consists of the rigid beam and two double pendula suspended on it. The
beam of mass M can move in horizontal direction, its movement is described by coordinate X. The beam is connected
to the refuge by a linear spring with stiffness coefficient Kx and linear damper with damping coefficient Cx. Each double
pendulum consists of two light beams of lengths L, L; and two masses M;; and My, where i=1,2, mounted at beam’s
ends. Subscripts s and ¢ describe respectively upper and lower parts (pendula) of each double pendulum (see Fig. 1).
The lower parts (pendula) are mounted to the upper parts (pendula) at the distances L, from the points in which double
pendula are mounted to the beam M. The motion of each double-pendulum is described by angles ¢ (lower pendulum)
and ¢, (upper pendulum). The oscillations of the double pendula are damped by the viscous dampers Cy; and C (not
shown in Fig. 1). The lower pendula of each double pendulum are excited by the clock escapement mechanism (described
in details in [10]) represented by momentum Mp; which provide the energy needed to compensate the energy dissipation
due to the viscous friction Cy;, C; and to keep the pendula oscillating [1]. This mechanism acts in two successive steps (the
first step is followed by the second one and the second one by the first one). In the first step if 0 < (¢4 — @) < 7y then
Mp; = My; and when (¢, — @) <0 or yy < (¢, — @) then Mp; = 0, where y, and My; are constant values which charac-
terize the mechanism. For the second stage one has for —yy < (¢4 — @) < 0 Mp; = —My; and Mp; = 0 for 0 < (¢, — ¢;) or
=N > (P — Psi)-

Note that the system shown in Fig. 1 can be considered as the two-dimensional model of Huygens’ experiment (upper
pendula represent clocks’ cases and lower pendula clocks’ pendula) [10].

The equations of motion of the considered system are as follows:

2 2

d’ o, d’ ¢y dog\” . d’Xx
MciL?i dipza + MciLaiLci d;/;“ COS((Pci - (psi) + MCiLaiLCi( ;/;.SI> Sln((pa (psz) + MCILC! le Cos (pa

do, dog o
+C¢C,(dt — dt)+MC,LC,gsmg0a Mp;, i=1,2 (1)

2 2

2
MgL2 ddq;“ + Mgl dd(gs’ + MqiLaiLg da;p cos(Qy4 — @g) — MeLgiLei (dg)t“") sin(Q, — @) + ML CZ‘ltX COS P

2

X .
+ MCiLai Z? COoS (pSi —+ Crpsi d(pSI C(/)Cl (d(pa _ d(P51

= i > + MgLgig sin @; + MgLag sin o = —Mp;, (2)

2 d*X dx d* do,\* .
<MB + Z(Mﬂ' + Msi)) a2 +Cx— dl’ +KxX = Z (MiLs; + MciLg;) < @Sl COS @; + ( C(lptﬂ) SIn Qg

i=1
+ E ML (Pa COS @ ci 2 Sill(P ; (3)
cilci Cl dt ci |

wherei=1,2.
Considering mass M, length L.; of the first lower pendulum and gravitational acceleration g as reference parameters one
can rewrite Egs. (1)-(3) in the dimensionless form:

X, M

R = |

o AN N
C. .5, IOR

La] le
Dy
Msl
(pcl L

M.,

c

Fig. 1. The model of two double pendula hanging from a horizontal beam.
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mcilgi(f);mcilailcifpsi CoS(Q — Pgi) + Meilailei P2 SIN(Q — Og) + MeileiX COS Qi + Coei(Pei — Psi) + Meilei SIN P
=Np;, i=1,2, (4)

mSil?i(/)Si + mcilzi(psi + MeilaileiPei COS(P; — @) — Meilailei 9F SIN(P; — Pg) + MiliX O P + MilaiX cos @
+ C(psiqbsi - Cgoci(qbci - (,bsi) + msilsi sin (psi + mcilai sin (psi = _NDia i= 1527 (5)

2 2
(mg + Z(ma— T+ ms,»)>5€ + ek 4 kX = Z(ms,-lsi + Meila) (—(psi €OS Py + P2 sin ;)

i=1 i=1

2
+ chilci(—¢ci €os @ + ¢z sin @), 6)
i=1
where
- Mg My Mg L _ L _X
mcz—MCly msz—Md, mB—Mﬂa lcz—le lsl—le X_Lﬂ’
C(pci VL C(psi VLei Co — CxvLla k., = KxLex Np = Mb;i

Coci = bl Cosi = bl bl - ’ - ’
T MalivgE T Maliyg Y Mayg Y Mag' " Malag
T = ot (dimensionless time), o = , /%, symbols “and " denote respectively % and £,
3. Energy balance

Assume that the motion of both pendula is periodic with period T. Multiplying Eq. (4) by the angular velocity of the lower
pendula and integrating it over the period T we obtain the equation of the energy balance:

T T T T
/ mcilgi(;bcigbcidr + / mcilailci¢si¢ci COS(QDCI- - @Si)df + / mcilailci(,bgi(,bci Sin<(,0d - (Psi)df + / mcilcikéoci cos q)cidr
0 0 0 0

T T T
+ / C(pci(gbci - Qbsi)qbcidf + / mcilcigbci sin (/)ddT = / NDi@cidry (7)
0 0 0

where i = 1,2. The first three components of Eq. (7) represent the work performed by the forces with which the lower pen-
dula act on the upper pendula:

T T T
WIcI;]ERT = /0 mcil?i¢ci¢cidf + /0 Meilgilei Psi Pei COS(P — Q)T + /0 Meilaile @ Pei SiN(@,; — @g)dr. (8)

The fourth component describes the energy transferred by the lower pendula (via the upper pendula) to the oscillating
beam:

T
WZYN = /0 MeilaX P cos @ ydt. 9)

The part of energy dissipated by lower pendula in the joints which connect lower and upper pendula is given by the follow-
ing component:

T
wot = /0 Coci(Pei — Psi) Paid. (10)

The last component on the left hand side of Eq. (7) represents the work performed by the gravitational force during one per-
iod of oscillations which due to the potential character of this force is equal to zero:

T
WI;OT = /0 mc,-lci('pa- sin (,DddT =0. (]])

Integral on the right hand side of Eq. (7) describes the part of the work performed by the escapement mechanism, i.e., the
part of this work which is connected with the motion of the lower pendula:

T
WERIVE / Npipudt. (12)
0
Substituting Eqgs. (8)-(12) into Eq. (7) one gets the energy balance of the lower pendula:

INERT SYN DAMP DRIVE
Wci +Wci +W = Wci : (13)

csi
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Next multiplying Eq. (5) by the angular velocity of the upper pendula and integrating it over the period T we obtain the
equation of the energy balance:

T T T T
/ msilgi(psiﬁbsidf + / mcilii(psi(psidf + / Meilailei Pei Psi cos(¢; — (/)sj)df - / mcilailciﬁb?igbsi sin(g; — QDS,-)dT
‘ T ° T ° T T °
+ / MilsiXpsi COS QAT + / MilaiX Psi COS AT + / Cosi PsiPsidT — / Coci(Pci — Psi) PsidT
0 0 0 0

T T T
+/ Mgilsi psi SIN QAT + / Meilai si SIN ;AT = / —Npipsidr. (14)
0 0 0

The first four components on the left hand side of Eq. (14) represent the work performed by the forces with which the upper
pendula act on the lower pendula:

T T T T
ng‘VERT :/0 msilszi(bsiﬁbsidf +/() mciliid’si(psidf +/() Meilgilei i Psi COS(P — Pgi)dT _/0 mcilailci(pgiﬁbsi sin(g; — ¢g)dt.

(15)
The next two components represent the energy transferred to the oscillating beam by upper pendula:
T T
Wi — / MglXPs; cos pdT + / MeiluiX (s cos @dr. (16)
0 0
The energy dissipated in the joints which connect upper pendula to the beam M is given by the following component:
DAMP T )
Ws,' = / C(psi(/)si(PsidT- (]7)
0

The next component represents the part of the energy dissipated in the joints which connect lower and upper pendula (the
part connected with the motion of the upper pendula):

T
W?cfi\MP = _/0 Coci(Pei — Psi) PsidT. (18)

The last two components on the left hand side of Eq. (14) represent the work performed by the gravitational force during one
period of oscillations which due to the potential character of this force is equal to zero:

T T
WZ-OT = /0 ms,‘ls,‘(,bsi sin q)sidf +/0 ma‘la,‘(,bs,‘ sin (psid‘[ =0. (]9)

The integral on the right hand side of Eq. (14) describes the part of the work performed by the escapement mechanism, i.e.,
the part of this work which is connected with the motion of the upper pendula:

T
WERIE _ / —Noipyd. (20)
0
Substituting Eqgs. (15)-(20) into Eq. (14) one gets the energy balance of the upper pendula:

ngVERT + W;YN + WZAMP + WDAMP _ WSDI'RIVE- (21)

sci

Adding Eq. (13) to Eq. (21) we get the equation describing the energy balance of the double pendula:

Wil;JERT + WZYN + WDAMP + Wg,'VERT + ngYN + WgAMP + WDAMP _ Wg-RIVE + WZRIVE. (22)

csi sci

Taking into consideration that W 1 WNERT — 0 one can rewrite Eq. (22) in the following form:

WiSYN " WZAMP i WZAMP _ WiDRIVE7 (23)
where the synchronization energy, i.e., the energy transferred by each double pendulum to the beam is given by:
T T
Wi — / MelaX (e cos p,dT + / (Meilyi + Mgils))XQsi COS P AT, (24)
0 0

the energy dissipated in the joint connecting upper and lower pendula by:

T
W?SI:‘\MP = /O quci((pci - ¢si)2dT7 (25)
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the energy dissipated in the joint connecting double pendula to the beam by:

woAMP — /0 ch,s,(pg.dr (26)
and the energy given by the escapement mechanizm by:

W = [ No(@— i 27)

Multiplying Eq. (6) by the velocity of the beam and integrating it over the period T we obtain the equation of the energy
balance of the beam:

T 2 T T
/ (mB +) (Mg + msi)>>’€5<dr + / CxxxdtT + / kyxxdt
0 0 0

i=1

T 2 T 2
= / (Z(msilsi + Milai) (— Psi €OS @ + @2 sin cos,-)>5<dr + / <chilci(—¢ci €OS @ + P sin <Pc,-)>5<df ~ (28)
0 0 \i=1

i=1

The first component on the left hand side of Eq. (28) represents the increase of the kinematic energy of the beam M and both
double pendula during period T which should be equal to zero (as the oscillations are periodic):

T 2
WINERT _ / <m3 +3 (mg + msi)>5&5<dr =0. (29)
0

i=1
The next component represents the energy dissipated in the damper c,:

T
wpMP / CxXXdT. (30)
0

The last component on the left hand side described the work performed by the force in the spring k, which due to the po-
tential character of this force is equal to zero:

T
wioT — / kexxdt = 0. (31)
0

The right hand side of Eq. (28) gives the resultant force with which both double pendula act on the beam so:
T /2 T /2
W _ / <Z(mgilsi + Meilai) (= psi €OS g + @%sin (ps,-)>5(d‘c + / <Zma~la»(—¢ci Cos ¢ + @2 sin (pci)>)'<dr, (32)
0 \i=1 0 \i=1
Substituting Eqgs. (29)-(32) into Eq. (28) one gets the energy balance of the beam in the form:
WAMP — Wi, (33)
Adding together Eqs. (23) and (33) we get the energy balance of the whole system in the following form:
WiYN n W?{\MP " W?]AMP n WgYN n W?ZAMP n W?ZAMP n W[[))AMP _ W11JRIVE i ngvs " W,S,YN. (34)

During the steady periodic oscillations the energy supplied by the escapement mechanisms is dissipated by the dampers, i.e.:

W?lAMP + WSD]AMP + W?ZAMP + W?ZAMP + WEAMP _ W?RIVE + WgRIVE (35)
and
W.]?YN + WgYN _ WiYN7 (36)

i.e., energy transferred to the beam by double pendula is equal to the work performed by the reaction forces in the joints
connecting the pendula to the beam.

4. Synchronous configurations in the system with identical pendula

Let us consider the system with identical double pendula (I.y = I3, L1 = L, lag = la, M = Mo, Mg = My,). Neglecting
the damping and the energy supplied by the escapement mechanism (see Eq. 25) one can rewrite Eq. (23) in the following
form:

wi™ =0, i=1,2 (37)
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and considering Eq. (33):
WiVN _ WEAMP _ O

In the small amplitudes’ limit the oscillations of the double pendula can be approximated by harmonic functions:

P = @y sin (T + ﬁci)
P = @ sin (T + ﬁsi)

so their velocities and accelerations are as follow:

P = D cos (T + B)
@si = D5 €OS (T + Py)
(;bci = —(Da‘ sin ('L' + ﬁci)
(psi = — g Sin (T + fy)

Substituting Eqgs. (39) and (40) into Eq. (6) (and neglecting damping) one gets:

2 2
<m3 + Z(ma + ms,-))ié + kX = Z(msils,- + Meilgi) ((I)si Sin(T + fy) + @2 cos?(T + f) sin(T + ,85,-)>

P i1
2
+ > Ml (@ Sin(c + ) + O COSA(T + By SIn(T + ) )
i1
Taking into account the relation:
cos? ysiny = 0.25siny + 0.25sin 3y

and indicating

2
U= my + Z(mci + msi)
i1
Eq. (41) can be rewriten in the following form:

2 2
UX + kyx = Z(Fg sin(T + Bg) + G sin(3t + 38;)) + Z (Fgsin(t + B4) + Gai sin(37 + 384)),
i=1

i-1
where

1 1
Fsi = (msilsi + mcilai) ((DSI + - 4 (D51) 3 Gsi = Z (msilsi + mCilai)(Dzb

1 1
Fci = (mcilci) <(Da + 4(Dc,> ) Gci = Z (mcilci)(Dg,\

The particular solution of Eq. (42) is given by:

2 2
X= (Xisin(T + By) + Quisin(37 +3B4)) + Y _(Xai SIn(T + f;) + Qi SIN(3T + 34)),
1 i=1

i=

where

Fsi

_ Gsi Fci
ky—U’ QS"_kx—gu’

Xci = Fd

Xsi= kxj: Qci:m~

The acceleration of the beam is given in the following form:
2 2
X =" (Aqsin(T+ By) + Dsisin(3T + 3B)) + Y _(Aa Sin(T + By) + D SIN(3T + 3B))
i=1 i=1

where As; = —Xi, Dsj = —9Qg;, Ag = —Xai, Do = —9Qg.

(40)

(42)

(43)

(44)

In the state of synchronization of the periodic oscillations of identical pendula the phase angles g, and j,; are constant
and independent of the initial conditions. There is no energy transfer from one double pendulum to the other one via the
beam so the synchronization energy (24) has to be equal to zero. Substituting Eq. (24) into Eq. (37) and considering Egs.

(40) and (44) one gets:
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SYN r r
Wy = /0 MeilkX Per €OS @ AT + /0 (Meilar + Mailse )X Py COS P dT

T 2 2
:/)mmM<EZMngT+&J+&ﬁmGT+3m +§:Aamnr+&J+aﬁmGI+3m»>
o i=1 i=1
2

T 2
q)ck COS(T + ﬁck)dr + / (mcklak + msklsk) (Z(Asi SiH(‘C + ﬂsi) + Dsi Sil'l(3T + 3ﬁsz + Z Acz SlH T+ ﬁa)
(] i=1

i=1

+mﬁmﬁf+3&m>®wawﬁ+ﬁwﬂf—0, (45)
where k = 1,2. Further calculations lead to the following form:

2
WiYN =Meilk i T (Z(ASI Sin(ﬁsi = Ba) +Adi Sin(ﬁci - ﬁck)))

i=1

2
+ (mcklck + msklsk)(bskn (Z(ASI Sin(ﬁsi - ﬁsk) + Aci Sin(ﬂci - ﬁsk))) =0. (46)

i-1
Eq. (46) is fulfilled for both double pendula (i.e., fori=1,2, k=1,2) when:

sin ﬁsz ﬁck =00

( )

Sll’l(ﬁa ﬁck) = 007

Sln(ﬁst ﬁsk) =0.0, (47)
)

Sln(ﬁci - ﬁsk =00

Assuming that ., = 0° (one phase angle can be arbitrarily taken) one can show that Eq. (47) is fulfilled by all combinations of
phase angles where f.,, 8,1, B2 = 0 or 7, i.e., both double pendula simultaneously go through the stable equilibrium position
and simultaneously reach the maximum displacements.

Egs. (47) and (39) allow the identification of the following synchronous configurations:

(i) Bs1 =0, B, =m, B4 =0, B, =7, the upper pendula are in the antiphase, i.e., ¢, = —@,,, ¢ = —@, and the upper
and the lower pendula of both double pendula are in the phase, ie., ¢ > 0= @51 >0, P2 <0, @2 <0 (AAP in
Fig. 2(a)).

(a) (b)

AAP AAA

© PPP @ PPA

O — ;
Fig. 2. Synchronous configurations of two identical double pendula: (a) 84 =0, By, =, B =0, B, = T, the upper and the lower pendula of both double
pendula are in the antiphase, i.e., ¢4 = —@,, ¢, = —@, and the upper and the lower pendula of both double pendula are in the phase, i.e.,
P >0= (P51 >0, P2 <0, P52 <0 (AAP), (b) f;; =0, B, =7, Bq =T, B, =0, the upper and the lower pendula of both double pendula are in the
antiphase, ie, @y =-¢,, ¢, =-¢, and the upper and the lower pendula of both double pendula are in the antiphase, i.e,
@1 > 0= @1 <0, P2 <0, @5 >0 (AAA), (c) f5 =0, B, =0, B4 =0, B, =0, both double pendula move identically, i.e., ¢4 = @, ¢, = @, and
the upper and the lower pendula of both double pendula are in the phase, ie, @i >0= @s >0, o >0, ¢ >0 (PPP), (d)

Ba =0, B, =0, By =T, B, =7, both double pendula move identically, i.e., ¢, = @, ¢, = ¢, and the upper and the lower pendula of both double
pendula are in the antiphase, i.e., 1 >0 = @51 <0, @2 >0, P52 < 0 (PPA).
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(ii)) By =0, B =7, Bq =T, By =0, the upper pendula of both double pendula are in the antiphase, i.e.
P51 = —Ps, Poq = —P and the upper and the lower pendula of both double pendula are in the antiphase, i.e.,
@1 > 0= (s1 <0, P <0, P52 >0 (AAA in Fig. 2(b)).

(iii) By =0, B, =0, B4 =0, B, =0, both double pendula move identically, i.e., ¢, = ¢, ¢4 = ¢, and the upper and
the lower pendula of both double pendula are in the phase, i.e., 91 > 0= @5 >0, @z >0, @s; > 0 (PPP in Fig. 2(c)).
(iv) B =0, B, =0, B4 =7, B, = 7, both double pendula move identically, i.e., ¢, = ¢, @, = @, and the upper and
the lower pendula of both double pendula are in the antiphase, i.e., @ > 0= @51 <0, ¢z >0, @2 <0 (PPA in
Fig. 2(d)). In the cases (i-ii) the beam is at rest while in the cases (iii-iv) it oscillates harmonically and its oscillations
are in the antiphase to the oscillations of the upper pendula.

Note that the conditions given by Eq. (45) allow also for non-symmetrical configurations given
by (ﬁs] = 0’ ﬁsz = 07 ﬁc] = 07 ﬁcz = TC)7 (ﬁsl =0, ﬁsZ =T, ﬁc] = 07 ﬁcz = 0)’ (ﬁs] = O’ 1852 = 07 ﬁcl =T, ﬁcZ = O) or (ﬁsl = 0’
Bo =T, B =T, By = m). In these configurations both double pendula have to reach different normal modes of oscillations
for the same frequency (as required by Eqgs. (39)), which is proven to be impossible in the small oscillations’ approximation

[1].

5. Numerical results
5.1. Two identical double pendula

We consider the examples of synchronous configurations and the bifurcation diagrams showing the dependence of the
type of the synchronous state on the initial conditions and system parameters. Our results have been obtained by numerical
integration (by 4th order Runge-Kutta method) of Eqgs. (4)-(6). In our calculations we consider the following values
of the system parameters (identical double pendula)mgi=1, mg=1, mp=10, =1, I =1, cyi =0.01,
Cosi = 0.01, ¢y =3.4147, Np; =0.02, i =1,2. The escapement mechanisms work In the range —y. < @, < 7., V. = 5°. The
damping coefficient of the beam c, gives the assumed logarithmic decrement of damping A = In(1.5) for the stiffness coef-
ficient k, = 50.0. The stiffness coefficient k, has been taken as a bifurcation parameter.

Fig. 3(a)-(d) presents the examples of four synchronous configurations introduced in Section 4 (Fig. 2(a)-(d)). We show
time series of the double pendula’s ¢, ¢,; and beam’s x (for better visibility 10 times enlarged) displacements versus dimen-
sionless time 7. The intervals of existence of these configurations and energy balances which are associated with them are
presented in Figs. 4(a)-(d), 5(a)-(c) and 6(a)-(c).

Fig. 3(a) shows the configurations AAP: the upper pendula of both double pendula are in the antiphase, i.e.,
P = —Pgy, P = —@Q, and the upper and the lower pendula of both double pendula are in the phase, ie,
P >0= @gq >0, Pz <0, @5 < 0. This configuration is stable for 5.0 < k, < 500.0. The energy supplied by the escape-
ment mechanism is dissipated by the pendula’s dampers and the beam is at rest:

WDAMP | /DAVP _ 1 /DRIVE,
DAMP DAMP DRIVE
Wo ™ +Wo™ = Wym,

WA = WS W = W~ 00

The energy balance during this configuration is shown in Fig. 5(a). Synchronous configuration AAA is shown in Fig. 3(b): the
upper pendula of both double pendula are in the antiphase, i.e., ¢, = —¢,,, ¢, = —®., and the upper and the lower pen-
dula of both double pendula are in the antiphase, i.e., ¢c; > 0= @5 <0, @ <0, @5 > 0. This configuration coexists with
the configuration AAP for 5.0 < k, < 500.0. The energy balances of AAP and AAA configurations are the same (see Fig. 5(a)).
Fig. 3(c) shows PPP configuration: both double pendula move identically, i.e., ¢, = @5,, ¢ = @, and the upper and the
lower pendula of both double pendula are in the phase, i.e., o > 0= ¢a >0, @2 > 0, @5 > 0. At this configuration part
of the energy supplied by the escapement mechanisms is dissipated by the pendula dampers and the rest (synchronization
energy) is transferred to the beam. The energy transferred by double pendula excites the beam’s oscillations and is dissipated
by the beam damper c,:

W?{QMP + W?]AMP + W.?YN — Wl«l)RIVE7
W?;MP + WEZAMP + W.;YN — WgRIVE.

W.]?YN + W.;YN _ WI.ZYN _ WI[))AMP

The energy balance during this configuration is shown in Fig. 5(b). The configuration PPA is shown in Fig. 3(d): both double
pendula move identically, i.e., ¢4 = @,,, ¢, = ¢, and the upper and the lower pendula of both double pendula are in the
antiphase, i.e.,, ¢ > 0= @5 <0, @ >0, @s; < 0. The energy balance for PPA and PPP configurations are the same (see
Fig. 5(b)).
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Fig. 3. Time series of double pendula’ ¢, ¢, and beam’s x (for better visibility 10 times enlarged) displacements versus dimensionless time 7 illustrating
different synchronous configurations of two identical double pendula: mg=1 mg=1 mg=10, I=1, Iy =1, cpq = 0.01,
Cosi = 0.01, ¢y =3.4147, Np; =0.02, i=1,2, (¢, - bold line, ¢, - bold blue line, ¢, - red line, ¢, - blue line, x - green line), (a) AAP synchronization,
ky = 50.0, (b) AAA synchronization, k, = 300.0, (c) PPP synchronization, k, = 50.0 (different initial conditions than in (a)), (d) PPA synchronization, ky = 5.0.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Transition from PPP to AAA synchronous configurations of two identical double pendula: m; =1, mg; =1, mg =10, I =1, I =1, coq = 0.01,
Cosi = 0.01, ¢y =3.4147, Np; =0.02, i =1,2, (¢, - bold line, ¢, - bold blue line, ¢, - red line, @, - blue line, x - green line); (a) bifurcation diagram
showing the transition from AAP to AAA synchronous configurations, (b) time series of the double pendula ¢, ¢,; and the beam’s x (for better visibility 10
times enlarged) displacements versus dimensionless time 7 illustrating NS synchronous configuration, k, = 88.0. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Configurations PPP and PPA coexist with configurations AAP and AAA only in particular intervals of stiffness coefficient
k. Fig. 4(a) presents the bifurcation diagram ¢, ¢;, x versus k,. The calculations started for k, = 50.0 and the following ini-
tial conditions:

0y =05 ¢ =05 ¢,=05 ¢,=05 @q=00, @g=00 @y=00 @s=0.0,
x=x=0,
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Fig. 5. Energy balances for different synchronous configurations; (a) AAP and AAA configurations, (b) PPP and PPA configurations, (c) NS configuration.
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Fig. 6. Regions of existence of PPP and PPA synchronous configurations of two identical double pendula:m; =1, mg =1, mg=10, l;=1, =1,
Coci = 0.01, cysi = 0.01, ¢y =3.4147, Np; =0.02, i = 1,2, (¢, - bold line, ¢, - bold blue line, ¢, - red line, ¢, - blue line, x - green line); (a) bifurcation
diagram showing the transition from PPP configuration to amplitude death AD, (b) time series of the double pendula’ ¢, ¢, and the beam’s x (for better
visibility 10 times enlarged) displacements versus dimensionless time 7 illustrating PPP3 synchronous configuration, ky = 42.5, (c¢) bifurcation diagram
showing the transition from PPA configuration to amplitude death AD. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

which lead to PPP configuration. The increase of the bifurcation parameter k, leads to the loss of configuration’s stability for
k., = 81.5. In the interval 81.5 <k, < 91.6 we observe previously unpredicted nonsymetrical synchronization NS. For
k. > 91.6 nonsymmetrical synchronization is replaced by the synchronous configuration AAA. Fig. 4(b) presents time series
of the double pendula’s ¢, ¢, and beam’s x (for better visibility 10 times enlarged) displacements versus dimensionless
time 7 during NS synchronization. The double pendula’ oscillations during this type of synchronization are similar to the
oscillations at PPP configuration, but pendula’ amplitudes are not equal, i.e., ¢ # ¢, and @4 # @,. The amplitudes of
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the oscillations of the lower and upper pendula of the first double pendulum are larger than the equivalent amplitudes of the
second double pendulum, i.e., the first double pendulum is excited by the second one. Note that the phase shifts between the
oscillations of both double pendula visible in Fig. 4(b) also indicate the energy transfer between double pendula. In this syn-
chronous state the part of the energy supplied by the escapement mechanism of the second double pendulum is dissipated
by the pendulum’s dampers and the other part is transferred to the beam (synchronization energy W3™). Part of W5™ excites

the beam (W;™) and is dissipated in the beam damper c,. The rest of synchronization energy W5™ (denoted as W3"™)is trans-
ferred to the first double pendulum via the beam. The dampers of the first double pendulum dissipate the energy supplied by
the escapement mechanism and the energy transferred from the second pendulum:

DAMP DAMP SYN DRIVE

Wo ™ +Wo ™ + Wy = W7m,

W.;YN _ WIS)YN " ‘WS{YN‘; WiYN <0,
SYN DAMP

Wy =W,

DAMP DAMP DRIVE SYN
WEMP 4 W — W - (W,

The energy balance for nonsymmetrical configuration is shown in Fig. 5(c).

Fig. 6(a) shows the bifurcation diagram for decreasing values of k,. We start from the configuration PPP (we use the same
initial conditions as for the calculation of the diagram of Fig. 4(a)). The configuration PPP is stable down to the value
ky = 45.2. The deacrease of k, causes the decrease of the amplitudes of both double pendula. At k, = 45.2 the difference be-
tween amplitudes of upper and lower pendula ¢, — @; (i=1,2) decreases below the y, what disturbs the regular operation
of the escapement mechanisms. First, we observe chaotic oscillations of both double pendula for 45.2 > k, > 44.0. In the
interval 44.0 > k, > 41.4 the escapement mechanisms become regular again but they supply smaller amounts of energy
as every third impulse is missing. We observe synchronization PPP3 which is similar to PPP but the pendula oscillate with
three times longer periods. Time series of the pendula displacements during this synchronization are shown in Fig. 6(b).
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Fig. 7. Synchronization of the system with two nonidentical double pendula with different length (the length of the lower pendulum of double pendulum 2
l> has been taken as a control parameter, ¢, - bold line, ¢, - bold blue line, ¢, - red line, ¢, - blue line, x - green line); (a) bifurcation diagram showing
the transition from PPP to AAA configuration I, = 1.001, (b) bifurcation diagram showing the transition from NAAP configuration to the turn off of the
escapement mechanism of double pendulum 2, (c) time series of the double pendula ¢, ¢, and the beam’s x (for better visibility 10 times enlarged)
displacements versus dimensionless time 7 illustrating NAAP synchronous configuration, I, = 1.051, (d) time series of the double pendula ¢, ¢ ; and the
beam’s x (for better visibility 10 times enlarged) displacements versus dimensionless time 7 illustrating the oscillations in the case when the escapement
mechanism of double pendulum 2 is turned off, I., = 1.25. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)



988 P. Koluda et al./ Commun Nonlinear Sci Numer Simulat 19 (2014) 977-990

Further decrease of k, leads to the chaotic oscillations in the interval 41.4 > k, > 40.9 and next to the amplitude death as the
result of the turn off of the escapement mechanisms. Fig. 6(c) presents k, interval for which the configuration PPA can be
observed. In the numerical calculations we start from ky = 5.0 and the following initial conditions:

@y =-008, @, =01, @o=-008 ¢,=01, ¢q=00, (g=00, (o=00, ¢go=00,
x=001, x=0.0,

which lead to the stable PPA configuration. The increase of the stiffness coefficient k, leads to the decrease of the amplitudes
of the double pendula oscillations, the escapement mechanisms’ turn off and finally to the amplitude death AD at k, = 27.0.

5.2. Two nonidentical double pendula

To observe how the behavior of the system is sensitive to small parameter mismatch consider the bifurcation diagram
shown in Fig. 7(a). Only one value of the system parameters slightly differs from that used in the calculations of bifurcation
diagram of Fig. 6(a). We take I, = 1.001 (previously I, = 1.000 has been taken). The region of existence of the PPP config-
uration is the same as in Fig. 6(a) but at ky, = 45.2 we observe the jump to AAA configuration which is stable in the whole
range of the considered values of k. In the bifurcation diagrams of Fig. 7(b) and 8(a) we fixed the value of k, = 50.0 and con-
sider the length [,as a bifurcation parameter. Calculating the bifurcation diagram of Fig. 7(b) we start from I, = 1.0 and the
following initial conditions:

®4=05 ¢ =05 ¢,=-05 o¢,=-05 ¢;5=00, ¢q=00  ¢,=00, ¢@,=0.0,
x=0.0, x=0.0,
which lead to stable AAP configuration shown in Fig. 3(a). The increase of length I, leads to the loss of symmetry. (For the

case of unmovable beam the period of oscillations of double pendulum 2 would be larger than the period of double pendu-
lum 1.) The oscillations of the beam cause the energy transfer from double pendulum 2 to double pendulum 1. The loss of the
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Fig. 8. Synchronization of the system with two double pendula with different length (the length of the lower pendulum of double pendulum 2 I, has been
taken as a control parameter), (¢, - bold line, ¢, - bold blue line, ¢,, - red line, ¢, - blue line, x - green line); (a) bifurcation diagram showing the
transition from NPPP configuration to quasiperiodic oscillations via NAAAconfiguration, (b) time series of the double pendula’ ¢, ¢, and the beam’s x (for
better visibility 10 times enlarged) displacements versus dimensionless time 7 illustrating NPPP synchronous configuration, I., = 1.02, (c) time series of the
double pendula’ ¢, ¢,; and the beam'’s x (for better visibility 10 times enlarged) displacements versus dimensionless time 7 illustrating NAAA synchronous
configuration, I, = 1.1005, (d) time series of the double pendula’s ¢, ¢ ; and beam’s x (for better visibility 10 times enlarged) displacements versus
dimensionless time 7 illustrating quasiperiodic oscillations QP, I, = 1.19. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 9. Synchronization of the system with two double pendula with different length (the length of the lower pendulum of double pendulum 2 I, has been
taken as a control parameter): (¢ - bold line, ¢, - bold blue line, ¢, - red line, ¢,, - blue line) (a) Poincare map showing quasiperiodic behavior,
lo = 1.19, (b) Poincare map showing the long periodic window in quasiperiodic regime, I, = 1.194. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

energy by double pendulum 2 and the increase of the energy of double pendulum 1 causes that the amplitudes of the pen-
dulum 1 are larger than the amplitudes of pendulum 2 and the periods of oscillations of both double pendula are equal (due
to the beam’s oscillations). This type of nonsymmetrical synchronization is illustrated in Fig. 7(c) and indicated as NAAP. The
energy balance during this synchronization is qualitatively similar to the balance of NS synchronization (see Fig. 5(c)). Syn-
chronization configuration NAAP is stable up to the value I, = 1.155. Decreasing the amplitudes of the pendula’ oscillations
causes that for larger values of I, the escapement mechanism of double pendulum 2 is switched off and the whole system is
excited by the escapement mechanism of double pendulum 1. Double pendulum 2 oscillates due to the energy supplied by
pendulum 1 (via the beam). This behavior is illustrated in Fig. 7(d).

Fig. 8(a) shows the next bifurcation diagram where the length I, is a bifurcation parameter. It starts from I, = 1.0 and
configuration PPP of Fig. 3(c) (we use the same initial conditions as in the calculations of Fig. 4(a)). The increase of I, leads to
the loss of symmetry. We observe the energy transfer from double pendulum 1 to double pendulum 2 (the opposite case to
the one described in Fig. 7(b)). The loss of energy by double pendulum 1 and the increase of the energy of double pendulum 2
causes that the amplitudes of pendulum 2 are larger than the amplitudes of pendulum 1 and the periods of oscillations of
both double pendula are equal. PPP synchronous configuration is replaced by nonsymmetrical configuration NPPP. The time
series of pendula’s displacements characteristic for this configuration are shown in Fig. 8(b). The energy balance during this
configuration is qualitatively the same as during NS configuration. Configuration NPPP is stable up to I, = 1.029 when we
observe transition to next configuration NAAA shown in Fig. 8(c). NAAA configuration is stable in the interval
1.029 < I, < 1.16. For larger values of I, double pendula’ oscillations become quasiperiodic (the amount of energy trans-
ferred from double pendulum 2 to double pendulum 1 is not sufficient to keep the periods of both pendula equal). Time ser-
ies characteristic for quasiperiodic oscillations are shown in Fig. 8(d).

The quasiperiodic character of the oscillations shown in Fig. 8(d) is proven on Poincare maps shown in Fig. 9(a) (for
lo = 1.19). The map shows the angular velocities of the upper and lower pendula of both double pendula versus the displace-
ments of these pendula. Both angular velocities and displacements are taken at the moments when the angular velocity of
the lower pendulum of the first double pendulum changes the sign from positive to negative one. The maps shown in
Fig. 9(a) consist of the closed curves which is characteristic for quasiperiodic behavior. Note the existence of the high-peri-
odic windows in the quasiperiodic regime as can be seen in Fig. 9(b) (for I., = 1.194). The period oscillations is equal to 82T.

6. Conclusions

Our studies show that two double pendula self-exited by the escapement mechanism hanging from the horizontally mo-
vable beam can synchronize. For identical pendula four different synchronous configurations are possible: (i) the upper pen-
dula of both double pendula are in the antiphase, (i.e., ¢;; = —¢,,, ¢ = — @) and the upper and the lower pendula of both
double pendula are in the phase, i.e., Pc1 > 0= ¢ >0, @2 <0, Ps; < 0 (AAP in Fig. 2(a)), (ii) the upper pendula of both
double pendula are in the antiphase, (i.e., ¢,; = —@,, ¢.; = —@,) and the upper and the lower pendula of both double pen-
dula are in the antiphase, i.e., 1 > 0= @51 <0, @2 <0, @2 > 0 (AAA in Fig. 2(b)), (iii) both double pendula move iden-
tically, i.e., ¢4 = @y, @4 = @, and the upper and the lower pendula of both double pendula are in the phase,
ie, @a>0= (g >0, >0, ¢ >0 (PPP in Fig. 2(c)), (iv) both double pendula move identically, i.e.,
P51 = Ps3y, Peq = P, and the upper and the lower pendula of both double pendula are in the antiphase, i.e.,
@1 >0= @ <0, P >0, P < 0(PPAin Fig. 2(d)). In the cases (i-ii) the beam is at rest while in the cases (iii-iv) it oscil-
lates harmonically and its oscillations are in the antiphase to the oscillations of the upper pendula. When the pendula are
nonidentical, i.e., have different lengths (and periods of oscillations) for small parameters’ mismatch we observe the
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synchronous states for which the phase difference between the pendula is close to 0 or 7 but for larger differences unsyn-
chronized quasiperiodic or chaotic oscillations dominate. Similar synchronous states have been observed experimentally in
[22] but to stabilize them the special controlling procedure has been applied.

The observed behavior of system (1) can be explained by the energy expressions derived in Section 3. which also show
why other synchronous states are not possible. We give the evidence that the observed behavior of the system is robust as it
occurs in the wide range of system parameters and can be observed experimentally.
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Streszczenie

Wyniki przedstawione w pracy dotycza dynamiki oraz mozliwosci synchronizacyjnych (synchron-
icznego ruchu okresowego) uktadu skladajacego sie z szeregu samowzbudnych wahadel podwojnych
podczepionych do belki. W sktad pracy wchodza trzy artykuty opublikowane w czasopismach z listy
JCR.

W pierwszym artykule “Synchronization of two self-excited double pendula” oscylacje wahadel za-
pewnione sg przez ttumienie van der Pola napedzajace gorne wahadta. Dla tego uktadu wyprowadzono
pieé¢ ciaglych réwnan rézniczkowych drugiego rzedu. Badania analityczne skladaly sie z wyznaczenia
na podstawie bilansu energii mozliwych stanéw synchronizacyjnych. Dla wahadet identycznych wyzn-
aczono cztery mozliwe stany synchronizacyjne. Analize numeryczng przeprowadzono przy pomocy
programu do $ledzenia orbit okresowych Auto07p. Umozliwia on §ledzenie ewolucji rozwiazan okresow-
ych w funkcji parametréw ukltadu oraz okreslenie ich statecznosci. W badaniach tych potwierdzono
wystepowanie wszystkich stanéw synchronizacyjnych uzyskanym metoda analityczng. Dalsze badania
numeryczne dotyczyty analizy bifurkacyjnej uzyskanych rozwiazan okresowych przy zmianie czestosci
drgan wlasnych belki. Stwierdzono, ze w badanym zakresie warto$ci parametru bifurkacyjnego dwa z
czterech rozwiazan sa zawsze stateczne, natomiast pozostale dwa zmieniaja swoja statecznosé.

Nastepnym etapem badan bylo rozszerzenie analizy na dowolna liczbe wahadel podwéjnych. Rezultatem
tych rozwazan jest artykut “Dynamics of n coupled double pendula suspended to the moving beam”.
Analityczne wyprowadzono warunek synchronizacji dla dowolnej liczy wahadel podajac rownocze$nie
algorytm opierajacy sie na hipotezach Goldbach’a pozwalajacy na obliczenie ilosci rozwigzan. Ze
wzgledu na fakt, ze liczba rozwigzan ro$nie wyktadniczo wraz ze zwiekszajaca sie liczba wahadet
zaprezentowano stany synchroniczne dla 3, 4 oraz 5 wahadet podwojnych. Dla ukltadu zlozonego 7
3 wahadel podwojnych okre§lono cztery mozliwe stany synchronizacji. Uktad 4 wahadel podwdéjnych
synchronizowal si¢ na cztery mozliwe sposoby, natomiast dla ukladu ztozonego z 5 wahadel podwdj-
nych okreslono szes¢ mozliwych standéw synchronizacji. Analiza bifurkacyjna uzyskanych rozwigzan
okresowych pokazala, ze ich statecznosé jest zalezna od czestodci drgan wlasnych belki.

W ostatnim artykule “Synchronization configurations of two coupled double pendula” analizowany
model ukladu sktada sie z belki oraz dwéch wahadet podwéjnych podczepionych do niej. Ruch wahadet
wymuszany jest mechanizmem zegarowym umieszczonym pomiedzy gérnym a dolnym wahadlem w
kazdym podwoéjnym wahadle. Zaproponowany model zostal opisany za pomoca niecigglych réwnan
rézniczkowych drugiego rzedu. Uzyskany uklad réwnan dal mozliwo$é wyznaczenia wartosci ener-

gii przekazywanych pomiedzy poszczegdlnymi elementami uktadu. Bilans energii pozwolil na analize
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stanow synchronicznych wahadel podwojnych i wyznaczenie czterech takich konfiguracji. Nastepnie
przeprowadzono badania numeryczne majace na celu potwierdzenie uzyskanych wynikéw analitycz-
nych. Obliczenia wykonano dla wahadel identycznych tzn. o jednakowych masach i dtugosciach,
oraz dla wahadel nieidentycznych (zmieniano dtugosé¢ wahadel). Dla wahadel identycznych oraz nie-
identycznych obliczono wykresy bifurkacyjne i wyznaczono obszary istnienia poszczegblnych rodzajow

synchronizacji przy zmianie czestosci drgan wlasnych belki.

Teza i cel pracy.
Teza:

Odpowiedni dobér parametrow podwdjnych wahadel powoduje wzrost ich mozliwosci synchroniz-
acyjnych.

Cel pracy:

Gléwnym celem pracy jest opis wplywu ruchu belki na mozliwosci synchronizacyjne podwdj-
nych wahadel przyczepionych do niej. Dla identycznych wahadel zostang przeanalizowane analitycznie
wystepujace rozwiazania okresowe oraz numerycznie zbadane zostang zakresy parametréw belki dla
ktorych sa stateczne. Nastepnie analiza zostanie rozszerzona o numeryczne badania synchroniza-
cji w ruchu okresowym przy nieidentycznych wahadlach (rozniacych sie masami). W wyniku pracy
powstanie katalog mozliwych rodzajéw synchronizacji w ruchu okresowym w przestrzeni parametrow

uktadu dla n podwojnych wahadet.



