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Abstract

This PhD thesis is devoted to analysis of synchronous states which exist in a system consists of

horizontally moving beam with n self-excited double pendula suspended to it. The results obtained

during four years of study have been published in three articles in journals form JCR list. The main

di�erence in analysis is in forcing of pendula. In the �rst and the second paper the pendula are exited

by van der Pol's type of damping, while in the third one by clock's escapement mechanism. Those

papers create a series which give an overview of dynamics of the considered system.

In the �rst article �Synchronization of two self-excited double pendula� the analysed model is

consists of beam with two suspended double pendula. The excitation is provided by the van der

Pol`s type of damping and is placed in the pivot of upper pendula, hence the system is described

by a continuous ordinary di�erential equations. For assumed model, with two double pendula, four

synchronous states exist, i.e, all pendula in phase, all in anti-phase and two mixed solutions (upper

pendula in phase and lower in anti-phase and vice verse). The numerical calculations are performed

using continuation toolbox Auto07p. The path-following allows to analyse, in detail, the existence,

stability and bifurcations along branches of period solutions. The starting points of path-following are

periodic solutions obtained for identical pendula. Bifurcations parameters are as follow: the masses

of pendula and beam and their in�uence on system's dynamics is investigated. Finally, the ranges of

stability of synchronous states in two parameters' space are calculated.

The second paper �Dynamics of n coupled double pendula suspended to the moving beam� extents

analysis showed in the previous article. The model consists of n double pendula coupled via the

beam. The main aim is to compute a number of synchronous states for arbitrary number of double

pendula. The analytical condition which enables calculation of exiting synchronous states is derived

using energy balance method. Because of its trigonometric form the solutions can be obtained only

numerically for limited number of coupled systems. The detail investigations are performed for the

system consists of 3,4 and 5 double pendula. In considered systems pendula synchronize in clusters.

In each cluster the number of pendula is a prime number. Based on Goldbach's conjectures, which

showed that any number can be expressed as prime number, one can obtain the synchronous states

for any number of coupled systems. At the end of our paper the stability of synchronous states is

discussed.

In the last article �Synchronization con�gurations of two coupled double pendula� the analysed

model consists of beam with two suspended double pendula. The excitation is provided by the clock

escapement mechanism which is placed between lower and upper pendula. Contrary to the previous

model, equations governed system's dynamics are discontinuous ordinary di�erential equations. The
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analytical investigations are performed using energy balance method. In the system with clock es-

capement mechanism, as well as for model with the van der Pol's type of damping, four synchronous

states are identi�ed. The numerical calculations performed for identical pendula con�rm the existence

of synchronous states. Bifurcation diagrams are computed for stable periodic solutions and show their

stability as a function of system's parameters. Finally, the in�uence of mismatch in system's para-

meters is investigated. The dynamics of considered system is comparable, to system with the van der

Pol's type of damping and both excitation terms can be treated as interchangeable.
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Appended papers

Paper 1 P. Koluda, P. Perlikowski, K. Czolczynski, and T. Kapitaniak. Synchronization of two self-

excited double pendula. European Physical Journal: Special Topics, 223(4):613629, 2014.

We consider the synchronization of two self-excited by van der Pol's type of damping double

pendula. We show that such pendula hanging on the same beam can have four di�erent synchronous

con�gurations. Our approximate analytical analysis allows us to derive the synchronization conditions

and explain the observed types of synchronization. We consider an energy balance in the system and

describe how the energy is transferred between the pendula via the oscillating beam, allowing thus

the pendula synchronization. Changes and stability ranges of the obtained solutions with increasing

and decreasing masses of the pendula are shown using path-following.

Paper 2 P. Koluda, P. Brzeski, and P. Perlikowski. Dynamics of n coupled double pendula suspended

to the moving beam. International Journal of Structural Stability and Dynamics, 14(8):1440028, 2014.

We consider the synchronization of n self-excited by van der Pol's type of damping double pendula.

For such pendula hanging on the same beam, di�erent synchronous con�gurations can be obtained (in-

phase and anti-phase states). An approximate analytical analysis allows to derive the synchronization

condition and explain the observed types of synchronization for any number of coupled double pendula.

The energy balance method is used to show how the energy between the pendula is transferred via

the oscillating beam allowing their synchronization. We compute periodic solutions for n = 2, 3, 4,

5 coupled double pendula, based on analytical predictions. For all obtained periodic solutions, we

investigate how the stability properties change with the varying natural frequency of the beam.

Paper 3 P. Koluda, P. Perlikowski, K. Czolczynski, and T. Kapitaniak. Synchronization con�gura-

tions of two coupled double pendula. Communications in Nonlinear Science and Numerical Simulation,

19(4):977990, 2014.

We consider the synchronization of two self-excited by clock's escapement mechanism double pen-

dula hanging from a horizontal beam which can roll on the parallel surface. We show that such pendula

can obtain four di�erent robust synchronous con�gurations. Our approximate analytical analysis al-

lows to derive the synchronization conditions and explains the observed types of synchronizations.

We consider the energy balance in the system and show how the energy is transferred between the

pendula via the oscillating beam allowing the pendula' synchronization.
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1 Introduction

The synchronization phenomena was written up in XVII-th century by the Dutch scientist Christian

Huygens [1]. When he was sick, he observed that two pendulum clocks hanged on the same wall can

synchronize their motions in anti-phase. Recently, a large progress in understanding of this phenomena

has been made and synchronizability of two and more single pendula is well understood [2, 3, 4, 5, 6,

7, 8, 9].

This PhD thesis is devoted to description of dynamics of double pendula coupled via the beam.

The double pendulum can be considered as a full model of mechanical clock because the additional

pendulum corresponds to the motion of clock's case. The �rst investigations on dynamics of the double

pendulum can be found in the paper by Rott [10], where an analytical investigation of the Hamiltonian

system is presented for di�erent ratios between natural frequencies of the pendula. The next results

obtained by Miles [11] describe dynamics of double pendulum under parametric excitation around the

2 : 1 resonance. A mode interaction in the double pendulum, including a detailed bifurcation analysis

near two multiple bifurcation points and a transition to quasi-periodic motion and chaos around the

2 : 1 parametric resonance, are presented in Refs. [12, 13, 5]. Similarly as for 2 : 1, the 1 : 1 resonance

leads to dynamics that include multiple bifurcation points, symmetry breaking points and cascades

of period doubling bifurcations [5]. In Strzalko et. al. [14] the rotations of the set of two pairs of

double pendula mounted on the platform which oscillates vertically is investigated experimentally

and numerically. The rotating pendula can be 1 : 1 and 1 : 2 synchronized with the oscillations of

the platform. Those states are extremely sensitive to perturbation (�fteen possible con�gurations are

described). Double pendula can be also considered as an example of many physical systems commonly

met in engineering, e.g., a model of bridge-pedestrian interactions [15], golf or hockey swing interactions

with arms [16], human body [17] or trunk [18] models. Generally speaking, such systems are globally

coupled multidimensional networks, so one can expect a coexistence of multiple attractors of di�erent

types (periodic, quasiperiodic and chaotic), see Refs. [2, 9, 19, 20].

As aforementioned, in the literature there are numerous analytical description of double pendulum

motion under parametric excitation. Nevertheless, there is lack of studies of interaction between two

or more coupled systems. In this PhD thesis two models of double pendula system are taken under

consideration, both of them are self-excited. In the �rst model the double pendula are excited by van

der Pol's type of damping [21, 22] and in the second one by clock escapement mechanism [23].
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2 The Doctoral Thesis and Main Objective

Thesis:

The proper selection of parameters of coupled double pendulums increase their synchronizability.

Main Objective:

The main objective of the thesis is description of synchronizability of double pendulums hanged on

the beam. For identical pendulums the synchronous states will be identi�ed with an analytical

method. The stability of obtained synchronous states will be calculated numerically using

path-following. Then, investigations of synchronous states will be extended for pendulums with

non-identical masses. All obtained results will be summed up in a catalogue which presents the

possible periodic solutions of coupled double pendulums.

3 Thesis Organization

The PhD thesis is organized as follow. The description of analysed models is shown in Section 4.

In Section 4.1 the overview of dynamics of system with van der Pol's type of damping is given. The

systems consist of 2, 3, 4, 5 and arbitrary number of coupled double pendula are considered. Section 4.2

contains the description of the model with clock escapement mechanism and presents the interactions

between two coupled double pendula. The brief conclusion of obtained results is given in Section 5. In

Section 6 three published papers are presented. Section 7 contains the doctoral thesis, main objective

and summary in polish.
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4 Analyzed Models

4.1 System with the van der Pol's type of damping.

The analysed system is shown in Fig. 1. It consists of a rigid beam and two double pendula suspended

on it. The beam of the mass M can move along the horizontal direction, its movement is described

by the coordinate xb.The beam is connected to a linear spring and a linear damper, kx and cx.
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Fig. 1: The model of the analyzed systems.

Each double pendulum consists of two light beams of the length li1 and the masses mi1 (i-th upper

pendulum) and the length li2 and mi2 (i-th lower pendulum), where i = 1, 2, mounted at its ends.

We consider double pendula with the same lengths li1 = li2 = l but di�erent masses mi1 and mi2 (to

maintain generality in the derivation of equations, we use indexes for lengths of the pendula). The

motion of each double pendulum is described by the angles ϕi1 (upper pendulum) and ϕi2 (lower

pendulum). The upper pendula are self-excited by the van der Pol type of damping (not shown in

Fig. (1)) given by the momentum (torque) cvdpϕ̇1i(1− µϕ2
1i), where cvdp and µ are constant. Van der

Pol damping results in the generation of a stable limit cycle. The lower pendula are damped with a

viscous damper with the coe�cient ci2. After introduction of dimensionless time τ = tω, equations of

motion of the considered system are as follows:

ÿb +

n∑
i=1

Ai1(ψ̈i1 cosψi1 − ψ̇2
i1 sinψi1) +

n∑
i=1

Ai2(ψ̈i2 cosψi2 − ψ̇2
i2 sinψi2)+ (1)

+Kyb +Cẏb = 0

δi1ÿb cosψi1 + Li1ψ̈i1 + Li3ψ̈i2 cos(ψi1 − ψi2) = (2)

−Li3ψ̇
2
i2 sin(ψi1 − ψi2)−Gi1 sin(ψi1)−Cvdp(1− µψ2

i1)ψ̇i1 −Ci2(ψ̇i2 − ψ̇i1)

δi2ÿb cosψi2 + Li3ψ̈i1 cos(ψi1 − ψi2) + Li2ψ̈i2 = (3)

Li3ψ̇
2
i1 sin(ψi1 − ψi2)−Gi2 sin(ψi2) +Ci2(ψ̇i2 − ψ̇i1)
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where i = 1, ..., n, y = x
lb
, ẏ = ẋ

lbω
, ÿ = ẍ

lbω2 , ψ = ϕ, ψ̇ = ϕ̇
ω , ψ̈ = ϕ̈

ω2 , M = M +
∑n
i=1

∑2
j=1mij , Ai1 =

(mi1+mi2)li1
Mlb

, Ai2 = mi2li2
Mlb

, K = kx
Mω2 , C = cx

Mω , δi1 = (mi1+mi2)li1
Ml12

, δi2 = mi2li2
Ml12

, Li1 =
(mi1+mi2)l

2
i1

l12lbM
,

Li2 =
mi2l

2
i2

l12lbM
, Li3 = mi2li2li1

lbMl12
, Gi1 = (mi1+mi2)li1g

l12ω2lbM
, Gi2 = mi2li2g

l12ω2lbM
, Cvdp =

cvdp

ωlbMl12
, Ci2 = ci2

l12ω0lbM

are dimensionless parameters.

As aforementioned pendula are identical, their oscillations have small amplitudes and perform

periodic motion. The motion of each pendulum is given by: ψij = Φij sin(ω0τ + βij), where βij

(i, j = 1, 2) are phase di�erences between the pendula and ω0 is frequency of harmonic motion.

This assumptions let us �nd synchronization condition using analytical energy balance method.

Equations of the energy balance have following form:

WDRIV E
beam −WDAMP

beam = 0 (4)

WSY N P
i1 −WSY N

i1 +WSELF
i1 +WDAMP

i1 = 0 (5)

WSY N P
i2 −WSY N

i2 +WDAMP
i2 = 0 (6)

for i = 1, ..., n. The �rst component of Equation (4) represents the work performed by horizontal

components of the force with which the double pendula act on the beam causing its motion (WDRIV E
beam )

and second component energy which is dissipated by the linear damper cx (WDAMP
beam ). Equation (5)

describes energy balance of the upper pendulums. The �rst component represents the energy which

is transferred to the beam (WSY N P
i1 ), while the second one describes the energy which is transferred

to lower pendulum (WSY N
i1 ). The third describes the energy which is supplied to the system by the

van der Pol's type of damping ( WSELF
i1 ) and last one represents the energy which is dissipated

(WDAMP
i1 ) by pendulum's damping. The last equation (6) describes the energy balance in the lower

pendulums. The �rst component corresponds to the energy which is transferred to the upper pendulum

( WSY N P
i2 ). The second component represents energy which is transferred to the beam (WSY N

i2 ) via

upper pendulum. The last one describes energy which is dissipated by the viscous damper (WDAMP
i2 ).

When energies WSY N P
i1 and WSY N P

i2 vanish the synchronization between lower and upper pen-

dulums is observed. Such situation occurs when phase di�erence angels have following values:

βi1 = βi2 ∨ (βi1 = 0 ∧ βi2 = π).

As it is easy to see there are two modes of synchronization between lower and upper pendulums.

The �rst one is synchronization in phase, when both pendulums move in the same direction. The

second mode is anti-phase synchronization, this type of synchronization occurs when lower and upper
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pendulums are oscillating in opposite directions. In each equation of energy balance describing motion

of pendulums (5-6) are components represent the transfer of energy to the beam, directly or via the

upper pendula. Ona can say that pendula act with synchronization momentum on the beam (upper

pendula directly and lower pendula via upper ones). In synchronous state the work done by this

momentum during one period of motion is equal to zero, hence WSY N
ij = 0 (i = 1, ..., n, j = 1, 2).

This condition can be written in the following form:

WSY N
kl = ξδklΦkl

 n∑
i=1

2∑
j=1

ΘijMij sin(βij − βkl)

 = 0 k = 1, ..., n, l = 1, 2, (7)

where:ξ =
−ω5

0π

M lb(K−ω2
0)
,Mi1 = (mi1+mi2)li1,Mi2 = mi2li2, Θij = Φij(1+0.25Φ2

ij), i = 1, ...n, j = 1, 2.

As it easy to see those equations give us trigonometrical relations between phase angles βij and enable

to calculate all possible synchronous states. The derivation assumes that in synchronous state beam

is at rest. The only exception is the case where upper and lower pendula are synchronized in phase

(the upper and lower pendulum can be either in phase or in anti-phase to each other).

Synchronization of two double pendula

For system consists of two double pendula equations 7 have the following form:

Θ12M12 sin(β12 − β11) + Θ21M21 sin(β21 − β11) + Θ22M22 sin(β22 − β11) = 0

Θ11M11 sin(β11 − β12) + Θ21M21 sin(β21 − β12) + Θ22M22 sin(β22 − β12) = 0

Θ11M11 sin(β11 − β21) + Θ12M12 sin(β12 − β21) + Θ22M22 sin(β22 − β21) = 0

Θ11M11 sin(β11 − β22) + Θ12M12 sin(β12 − β22) + Θ21M21 sin(β21 − β22) = 0

(8)

Equations 8 are ful�lled for βij , which are combinations of 0 and π. Assuming that β11 = 0, one can

identify the following pendulum con�gurations which are presented in Fig. 2(a-d). The �rst type is the

con�guration shown in Fig. 2(a). Both upper and lower pendula are phase synchronized, i.e., ψ11 = ψ21

and ψ12 = ψ22 (β11 = β12 = β21 = β22 = 0 or β11 = β21 = 0, β12 = β22 = π). The upper and lower

pendula are respectively in phase and anti-phase synchronized i.e., ψ11 = ψ21 and ψ12 = −ψ22 in the

con�guration of Fig. 2(b) (β11 = β12 = β21 = 0, β22 = π or β11 = β12 = β22 = 0, β21 = π). Fig. 2(c)

presents the case when both upper and lower pendula are synchronized in anti-phase i.e., ψ11 = −ψ21

and ψ12 = −ψ22 (β11 = β12 = 0, β21 = β22 = π or β11 = β22 = 0, β12 = β21 = π). Finally in Fig. 2(d)

we present the case when upper pendula are in anti-phase and lower pendula in phase ψ11 = −ψ21
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and ψ12 = ψ22 (β11 = β12 = β22 = 0, β21 = π or β11 = 0, β21 = β12 = β22 = π).

Fig. 2: Synchronous states of system ((1)-(3)): (a) upper and lower pendula in phase: β11 = β21 =
β12 = β22; (b) upper pendula in phase, lower pendula in anti-phase: β11 = β21 = 0, and β12 =
β22 = π; (c) upper and lower pendulums in anti-phase: β11 = β12 = 0 and β21 = β22 = π; (d)
upper pendulums in anti-phase, lower pendulums in phase: β11 = β22 = 0 and β12 = β21 = π.

Synchronization of system consists of 3, 4, 5 double pendula

In this section we show an analytical condition for synchronous solutions of n coupled double

pendula. The derivation of synchronization condition is shown in the Appendix A of Koluda et. al. [22].

To simplify form of this condition we assume that pendula have identical masses and lengths, i.e,mi1 =

mi2 and li1 = li2 (for i = 1, . . . , n) and we use trigonometric identity: sin(α1 − α2) = sinα1 cosα2 −

cosα1 sinα2. For n coupled double pendula the synchronization condition has the following form:

cosβ11(
∑k=n
k=1 sinβk1 − sinβ11)− sinβ11(

∑k=n
k=1 cosβk1 − cosβ11) = 0

cosβ21(
∑k=n
k=1 sinβk1 − sinβ21)− sinβ21(

∑k=n
k=1 cosβk1 − cosβ21) = 0

...
...

cosβn1(
∑k=n
k=1 sinβk1 − sinβn1)− sinβn1(

∑k=n
k=1 cosβk1 − cosβn1) = 0

(9)

for i = 3, ..., n.

The solutions f Eqs 9 for n = 3 double pendula are as follows: β11 = 0 ∧ β21 = 2π
3 ∧ β31 = 4π

3 or

β11 = β21 = β31. Hence, four di�erent con�gurations are presented in Fig. 3 (in each state pendula

in double pendulum can either in phase or anti-phase synchronization) For n = 4 we also observe

four possible synchronous states with following phase shifts: β11 = β21 = 0 ∧ β31 = β41 = π or

β11 = β21 = β31 = β41 and we show them in Fig.4. Finally, for n = 5 the synchronization condition

takes the form: β11 = 0 ∧ sinβ21 + sinβ31 + sinβ41 + sinβ51 = 0. That implies the �owing solutions:

β21 = 0 ∧ β31 = 0 ∧ β41 = 0 ∧ β51 = 0 or β11 = 0 ∧ β21 = 2
5π ∧ β31 = 4

5π ∧ β41 = 6
5π ∧ β51 = 8

5π

or combinations when two double pendula are in anti-phase synchronization and three are shifted

by 2π/3 (see phase shifted state of three coupled double pendula). All described con�gurations are
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presented in Fig. 5.

(c) (d)

(a) (b)

Fig. 3: Possible synchronous states for n = 3 double pendula: (a,b) upper and lower pendulums in
phase β11 = β21 = β31, β12 = β22 = β32; (c,d) upper and lower pendula shifted by 2π

3
:β11 = 0 ∧ β21 = 2π

3 ∧ β31 = 4π
3 and β12 = 0 ∧ β22 = 2π

3 ∧ β32 = 4π
3 .

(c) (d)

(a) (b)

Fig. 4: Possible synchronous states for n = 4 double pendula: (a,b) upper and lower pendula in phase:
β11 = β21 = β31 = β41 and β12 = β22 = β32 = β42; (c,d) upper and lower pendula in anti-phase
in pairs: β11 = −β31,β21 = −β41 and β12 = −β32, β22 = −β42.

(e) (f)

(c) (d)

(a) (b)

Fig. 5: Possible synchronous states for n = 5 double pendula: (a,b) upper and lower pendula in phase:
β11 = β21 = β31 = β41 = β51 and β12 = β22 = β32 = β42 = β52; (c,d) upper and lower pendula
synchronized in phase in two anti-phase clusters; (e,f) upper and lower pendula shifted by 2π

5 :
β11 = 0

∧
β21 = 2π

5

∧
β31 = 4π

5

∧
β41 = 6π

5

∧
β51 = 8π

5 and β12 = 0
∧
β22 = 2π

5

∧
β32 =

4π
5

∧
β42 = 6π

5

∧
β52 = 8π

5 .
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Synchronous states for n double pendula

According to detailed analysis of synchronization in system of n = 2, 3, 4, 5 coupled double pendula

we can generalize obtained results for an arbitrary number n of systems. Despite the value of n we can

observe the state where all double pendula are synchronized in phase which means that all upper and

similarly all lower pendula are completely synchronized. They act on the beam causing its oscillations.

Considering other possible con�gurations we have to recall our assumptions which are used to derive

the analytical condition of synchronization: the beam is at rest and double pendula perform harmonic

motion. The minimum number of double pendula in cluster is two because for two and more double

pendula in cluster, forces acting on beam vanish. As clusters are not acting on one another via the

beam, the phase shift between clusters can be an arbitrary number from 0 to 2π. The number of

double pendula in each cluster is a prime number because any other number can be expressed as a

sum of prime numbers [24]. The phase shift between double pendula in cluster is 2π/n1, where n1

is a number of double pendula in the cluster (n1 is a prime number). For example for n = 11 we

can observe the following numbers of double pendula in clusters: (3, 2, 2, 2, 2) or (3, 3, 3, 2) or

(5, 3, 3) or (5, 2, 2, 2) or (7, 2, 2) or (11). Note that (9, 2) is not a possible solution - the cluster

of nine double pendula can be created from three clusters with three pendula shifted by 2π/3. The

formula which let us calculate the number of possible con�gurations is complex, hence it is better to

base on an algorithm (see Appendix B in [22]) which give us explicit results. The number of possible

clusters grows much faster than the number n of double pendula (the tendency is close to exponential),

e.g, for n = 10 (5 clusters), n = 30 (98 clusters), n = 60 (2198 clusters), n = 90 (38257 clusters),

n = 120 (145627 clusters). Additionally, when number of double pendula is a prime number we have

a case where double pendula are equally distributed with phase shift 2π/n, so for our example with

n = 11 double pendula we observe a seventh possible con�guration. For all mentioned above types

of synchronization in each double pendulum the upper and lower pendulum can be synchronized in

phase or anti-phase, hence the number of possible synchronous states is two times bigger than the

number of possible clusters.

4.2 System with clock escapement mechanism.

The analyzed system is shown in Fig. 6. It consists of the rigid beam and two double pendula suspended

on it. The beam of mass M can move in horizontal direction, its movement is described by coordinate

X. The beam is connected to the refuge by a linear spring with sti�ness coe�cient KX and linear

damper with damping coe�cient CX . Each double pendulum consist of two light beams of length Lci,

Lsi and two masses Mci and Msi, where i = 1, 2, mounted at beam's ends. The lower pendulums are
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mounted to the upper ones at the distance Lai. The motion of each double pendulum is described by

angles ϕci (the lower pendula) and ϕsi (the upper pendula). The oscillations of the double pendula

are damped by the viscous dampers Csi and Cci (not shown in Fig. 6). The lower pendula of each

double pendulum are excited by the clock escapement mechanism represented by momentum MDi.

This mechanism acts in two successive steps (the �rst step is followed by the second one and the

second one by the �rst one). In the �rst step if 0 < (ϕci − ϕsi) < γN then MDi > MNi and when

(ϕci − ϕsi) < 0 or γN < (ϕci − ϕsi) then MDi = 0 , where γN and MNi are constant values which

characterize the mechanism. For the second stage one has for −γN < (ϕci − ϕsi) < 0 MDi = −MNi

andMDi = 0 for 0 < (ϕci −ϕsi) or −γN > (ϕci −ϕsi). Considering a mass Mc1, length Lc1of the �rst

lower pendulum and gravitational acceleration g as a reference parameters and take dimensionless

time τ = αt, where α =
√

g
Lc1

, equations of system's motion take form:

mcil
2
ciϕ̈ci +mcilatlciϕ̈si cos(ϕci − ϕsi) +mcilcilaiϕ̇

2
si sin(ϕci − ϕsi) +mcilciẍ cosϕci + cϕci (ϕ̇ci − ϕ̇si) (10)

+mcimci sinϕci = NDi

mcil
2
ciϕ̈ci +mcil

2
aiϕ̈si +mcilailciϕ̈ci cos(ϕci − ϕsi) +mcilcilaiϕ̇

2
si sin(ϕci − ϕsi) +msilsiẍ cosϕsi + cϕsiϕ̇si

(11)

−cϕci (ϕ̇ci − ϕ̇si) +msilsi sinϕsi = −NDi(
mB +

2∑
i=1

(mci +mSi)

)
ẍ+ cxẋ+ kxx =

2∑
i=1

(msilsi +mcilai)
(
−ϕ̈si cosϕsi + ϕ̇2

si sinϕsi

)
(12)

+

2∑
i=1

mcilci
(
−ϕ̈ci cosϕci + ϕ̇2

ci sinϕci

)

where: i = 1, 2, mci = Mci

Mc1
, msi = Msi

Mc1
, mb = MB

Mc1
, lci = Lci

Lc1
, lsi = Lsi

Lc1
, x = X

Lci
, cϕci =

Cϕci

√
Lc1

Mc1L2
c1

√
g
,

cϕsi =
Cϕsi

√
Lc1

Mc1L2
c1

√
g
, cx = CX

√
Lc1

Mc1
√
g , kx = KXLc1

Mc1g
, NDi = MDi

Mc1Lc1g
and symbols ˙ and¨denote respectively

d
dτ and d2

dτ2 .

For obtined equations we can perform similar analisys are for system with van der Pol's type of

damping. Let us assume that motion of system is periodic and oscillations of the double pendula can

be approximated by harmonic functions: ϕci = Φci sin (τ + βci) and ϕsi = Φsi sin (τ + βsi) where βsi

and βci are phase shift angels between pendula.

hence based on energy balance method we can determine the energy which is transferred to the

beam from pendula, the energy which is transferred between lower and upper pendula and the energy

which drive pendula during one period of motion. The equations of energy balance have the following

form:
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Fig. 6: The model of two double pendula suspended to a beam.

W INERT
ci +WSY N

ci +WDAMP
csi = WDRIV E

ci (13)

W INERT
si +WSY N

si +WDAMP
si +WDAMP

sci = WDRIV E
si (14)

WDAMP
b = WSY N

b . (15)

Eq. 13 corresponds to energy balance of i − th lower pendulum, Eq. 14 to energy balance of

i − th upper pendulum and �nally the Eq. 15 to the energy balance of the beam. In Eqs 13and 14

components WSY N represent synchronization energy. The sum WSY N
ci +WSY N

si = WSY N
i (i = 1, 2)

is total synchronization energy of i − th double pendulum which is transferred to the beam. The

synchronization occurs when WSY N
i vanished. Assuming that lenghs and masses of pendula are equal

the solution of Eqs 13-15 let us derive the synchronization condition of double pendula in the following

form:

sin(βsi − βck) = 0

sin(βci − βck) = 0 (16)

sin(βsi − βsk) = 0

sin(βci − βsk) = 0

where i = 1, 2 and k = 1, 2. Assuming that βc1 = 0 (one phase angle can be arbitrarily taken). System

of equations 16 is ful�lled when phase angles βc1, βc2, βs1, βs2 are combinations of 0 or π. The possible

synchronization states are shown in Fig.7.
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Fig. 7: Possible states of synchronizations: (a) all pendula are in phase βs1 = βs2 = βc1 = βc2 = 0, i.e,.
both pendulum move identically; (b) upper pendula are in phase βs1 = βs2 = π, βc1 = βc2 = 0,
i.e., both pendula move identically, lower and upper pendulum are in anti-phase; (c) both
pendulums move in opposite directions βs1 = βc1 = 0, βs2 = βc2 = π; (d) upper pendula are in
anti-phase, the lower and the upper pendula are in anti-phase βs1 = βc2 = π, βs2 = βc1 = 0.

5 Conclusions

The aim of this study was to derive a mathematical model of the systems, calculate periodic solutions,

identify the di�erent types of synchronous states and investigate the in�uence of system's parameters

on the stability of synchronization.

In �rst paper for identical pendula, four di�erent synchronous con�gurations are possible. The

appearance of those states can be explained by the energy expressions which also show why other

synchronous states are not possible. Nevertheless, not all synchronous states are stable for the given

parameters of the beam. When the pendula are nonidentical, i.e., have di�erent masses, we observe

synchronous states for which the phase di�erence between the pendula vary in range from 0 to π. All

obtained solutions destabilize in the Neimark-Sacker or saddle-node bifurcations, which results in an

appearance of unsynchronized quasiperiodic oscillations or a jump to another attractor.

In second article we derive the analytical condition which enable calculation of the possible periodic

solutions for any number of double pendula. The number of possible con�gurations grows with the

number of coupled pendula. We examine how stability of each considered periodic solution changes

with varying natural frequency of the beam. In the considered system, the typical bifurcation that

stabilizes/destabilizes periodic solutions is a Neimark-Sacker bifurcation. The proper choice of beam's

mass parameter one can ensure that only selected solutions are stable.

The last paper let us conclude that two double pendula self-exited by the escapement mechanism

hanging from the horizontally movable beam can synchronize in four con�gurations. When the pendula

are nonidentical, i.e., have di�erent lengths (and periods of oscillations) for small parameters' mismatch

we observe the synchronous states for which the phase di�erence between the pendula is close to 0 or

π but for larger di�erences unsynchronized quasiperiodic oscillation dominates.
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Abstract. We consider the synchronization of two self-excited double
pendula. We show that such pendula hanging on the same beam can
have four different synchronous configurations. Our approximate ana-
lytical analysis allows us to derive the synchronization conditions and
explain the observed types of synchronization. We consider an energy
balance in the system and describe how the energy is transferred be-
tween the pendula via the oscillating beam, allowing thus the pendula
synchronization. Changes and stability ranges of the obtained solutions
with increasing and decreasing masses of the pendula are shown using
path-following.

1 Introduction

Synchronization is commonly observed to occur among oscillators [1–5]. It is a process
where two or more systems interact with one another and come to oscillate together.
Groups of oscillators are observed to synchronize in a diverse variety of systems, de-
spite inevitable differences between oscillators. The history of synchronization goes
back to the 17th century. In 1673 the Dutch scientist Ch. Huygens observed weak
synchronization of two pendulum clocks [6]. Recently, the phenomenon of synchro-
nization of clocks hanging on a common movable beam [7] has been the subject of
research conducted by numerous authors [6,8–18]. These studies explain the phenom-
enon of synchronization of a number of single pendula.
In our work we consider an interaction between two double pendula. One of the

first investigations on dynamics of the double pendulum can be found in the paper by
Rott [19], where an analytical investigation of the Hamiltonian system for different
ratios between natural frequencies of pendula is presented. The next results obtained
by Miles [20] show dynamics of the double pendulum under parametric excitation
around the 2 : 1 resonance. A mode interaction in the double pendulum, including a
detailed bifurcation analysis near two multiple bifurcation points and a transition to
quasi-periodic motion and chaos around the 2 : 1 parametric resonance, is presented in
[21–23]. Similarly as for 2 : 1, the 1 : 1 resonance leads to dynamics including multiple
bifurcation points, symmetry breaking and cascades of period doubling bifurcations

a e-mail: przemyslaw.perlikowski@p.lodz.pl
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Fig. 1. Model of the system – two double pendula are mounted to the beam which can
move horizontally. Each double pendulum consists of an upper pendulum of the length li1
and the mass mi1 and a lower pendulum of the length li2 and the mass mi2 (i = 1, 2). The
upper pendula are self-excited.

[23]. Double pendula can be also considered as an example of many physical systems
commonly met in engineering, e.g., a model of bridge-pedestrian interactions [24], golf
or hockey swing interactions with arms [25], human body [26] or trunk [27] models.
In this paper we consider the synchronization of two self-excited double pendula.

The oscillations of each double pendulum are self-excited by the van der Pol type of
damping associated with the upper parts (upper pendula) of each double pendulum.
We show that two such double pendula hanging on the same beam can synchronize
both in phase and in anti-phase. We give an evidence that the observed synchronous
states are robust as they exist for a wide range of system parameters and are pre-
served for the parameter mismatch. The performed approximate analytical analysis
allows us to derive the synchronization conditions and explain the observed types of
synchronization. The energy balance in the system allows us to show how the energy
is transferred between the pendula via the oscillating beam.
This paper is organized as follows: Sect. 2 describes the considered model of the

coupled double pendula, in Sect. 3 we derive an energy balance of the synchronized
pendula, whereas Sect. 4 presents the results of our numerical simulations and de-
scribes the observed synchronization states and their ranges of stability. Finally, we
summarize our results in Sect. 5.

2 Model

The analyzed system is shown in Fig. 1. It consists of a rigid beam and two double
pendula suspended on it. The beam of the mass M can move along the horizontal
direction, its movement is described by the coordinate xb.The beam is connected to
a linear spring and a linear damper, kx and cx.
Each double pendulum consists of two light beams of the length li1 and the masses

mi1 (i-th upper pendulum) and the length li2 and mi2 (i-th lower pendulum), where
i = 1, 2, mounted at its ends. We consider double pendula with the same lengths
l11 = l21 = l12 = l22 = l but different masses mi1 and mi2 (to maintain generality in
the derivation of equations, we use indexes for lengths of the pendula). The motion
of each double pendulum is described by the angles ϕi1 (upper pendulum) and ϕi2
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(lower pendulum). The upper pendula are self-excited by the van der Pol type of
damping (not shown in Fig. 1) given by the momentum (torque) cvdpϕ̇1i(1 − µϕ21i),
where cvdp and µ are constant. Van der Pol damping results in the generation of a
stable limit cycle [1]. The lower pendula are damped with a viscous damper with the
coefficient ci2. The equations of motion of the considered system are as follows:

(M +
2∑
i=1

2∑
j=1

mij)ẍb +
2∑
i=1

(mi1 +mi2)li1(ϕ̈i1 cosϕi1 − ϕ̇2i1 sinϕi1)

+
2∑
i=1

mi2li2(ϕ̈i2 cosϕi2 − ϕ̇2i2 sinϕi2) + kxxb + cxẋb = 0

(mi1 +mi2)li1ẍb cosϕi1 + (mi1 +mi2)l
2
i1ϕ̈i1 +mi2li1li2ϕ̈i2 cos(ϕi1 − ϕi2)

+mi2li1li2ϕ̇
2
i2 sin(ϕi1 − ϕi2) + (mi1 +mi2)li1g sin(ϕi1)

+cvdp(1− µϕ2i1)ϕ̇i1 + ci2(ϕ̇i2 − ϕ̇i1) = 0
mi2li2ẍb cosϕi2 +mi2li1li2ϕ̈i1 cos(ϕi1 − ϕi2) +mi2l2i2ϕ̈i2
−mi2li1li2ϕ̇2i1 sin(ϕi1 − ϕi2) +mi2li2g sin(ϕi2)− ci2(ϕ̇i2 − ϕ̇i1) = 0. (1)

Introducing the dimensionless time τ = ωt, where ω2 = g
l11
is the natural frequency

of the upper pendula, we can rewrite Eq. (1) in the dimensionless form as:

ÿb +

2∑
i=1

Ai1(ψ̈i1 cosψi1 − ψ̇2i1 sinψi1) +
2∑
i=1

Ai2(ψ̈i2 cosψi2 − ψ̇2i2 sinψi2)

+Kyb +Cẏb = 0 (2)

δi1ÿb cosψi1 + Li1ψ̈i1 + Li3ψ̈i2 cos(ψi1 − ψi2) =
−Li3ψ̇2i2 sin(ψi1 − ψi2)−Gi1 sin(ψi1)−Cvdp(1− µψ2i1)ψ̇i1 −Ci2(ψ̇i2 − ψ̇i1) (3)

δi2ÿb cosψi2 + Li3ψ̈i1 cos(ψi1 − ψi2) + Li2ψ̈i2 =
Li3ψ̇

2
i1 sin(ψi1 − ψi2)−Gi2 sin(ψi2) +Ci2(ψ̇i2 − ψ̇i1) (4)

where Ai1 =
(mi1+mi2)li1

Mlb
, Ai2 =

mi2li2
Mlb
, K = kx

Mω2
, C = cx

Mω
, δi1 =

(mi1+mi2)li1
Ml12

,

δi2 =
mi2li2
Ml12

, Li1 =
(mi1+mi2)l

2
i1

l12lbM
, Li2 =

mi2l
2
i2

l12lbM
, Li3 =

mi2li2li1
lbMl12

, Gi1 =
(mi1+mi2)li1g
l12ω2lbM

,

Gi2 =
mi2li2g
l12ω2lbM

, Cvdp =
cvdp

ωlbMl12
, Ci2 =

ci2
l12ωlbM

.

3 Analytical conditions for synchronization

3.1 Force with which the pendula act on the beam

In this section we derive an approximate analytical condition for the pendulum syn-
chronization in the considered system. Assuming that the double pendula are identical
and perform periodic oscillations with the frequency ω0 and low amplitudes, one can
describe displacements, velocities and accelerations of the upper and lower pendula
in the following way:

ψij = Φij sin(ω0τ + βij), (5)
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ψ̇ij = ω0Φij cos(ω0τ + βij), (6)

ψ̈ij = −ω20Φij sin(ω0τ + βij), (7)

where βij (i, j = 1, 2) are phase differences between the pendula.
Equation (2) allows an estimation of the resultant force with which the pendula

act on the beam:

F = −
2∑
i=1

Ai1(ψ̈i1 cosψi1 − ψ̇2i1 sinψi1)−
2∑
i=1

Ai2(ψ̈i2 cosψi2 − ψ̇2i2 sinψi2). (8)

Substituting Eqs. (5–7) into Eq. (8) and considering the relation cos2 α sinα =
0.25 sinα+ 0.25 sin 3α, one obtains:

F = A11[ω
2
0Φ11(1 + 0.25Φ

2
11) sin(ω0τ + β11) + ω

2
0Φ
3
110.25 sin(3ω0τ + 3β11)]

+A12[ω
2
0Φ12(1 + 0.25Φ

2
12) sin(ω0τ + β12) + ω

2
0Φ
3
120.25 sin(3ω0τ + 3β12)]

+A21[ω
2
0Φ21(1 + 0.25Φ

2
21) sin(ω0τ + β21) + ω

2
0Φ
3
210.25 sin(3ω0τ + 3β21)]

+A22[ω
2
0Φ22(1 + 0.25Φ

2
22) sin(ω0τ + β22) + ω

2
0Φ
3
220.25 sin(3ω0τ + 3β22)]. (9)

Equation (9) is the right-hand side of equation of the beam motion (2), hence we
have:

ÿb +Kyb +Cẏb = F. (10)

Assuming that the damping coefficient C is small, one gets:

yb =

2∑
i=1

2∑
j=1

X1ijAij sin(ω0τ + βij) +

2∑
i=1

2∑
j=1

X3ijAij sin(3ω0τ + 3βij),

ÿb =

2∑
i=1

2∑
j=1

A1ijAij sin(ω0τ + βij) +

2∑
i=1

2∑
j=1

9A3ijAij sin(3ω0τ + 3βij), (11)

where:

X1ij =
ω20Φij(1 + 0.25Φ

2
ij)

K− ω20
, X3ij =

0.25ω20Φ
3
ij

K− 9ω20
,

A1ij =
−ω40Φij(1 + 0.25Φ2ij)

K− ω20
, A3ij =

−0.25ω40Φ3ij
K− 9ω20

. (12)

Equations (11) represent the displacement and the acceleration of the beam M ,
respectively.

3.2 Energy balance of the system

Multiplying Eq. (2) by the velocity of the beam ẏb, we obtain:

ÿbẏb +Kybẏb = −Cẏ2b −
2∑
i=1

Ai1(ψ̈i1ẏb cosψi1 − ψ̇2i1ẏb sinψi1)

−
2∑
i=1

Ai2(ψ̈i2ẏb cosψi2 − ψ̇2i2ẏb sinψi2). (13)
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Assuming that the motion of the pendulum is periodic with the period T (T = 2π/ω0)
and integrating Eq. (13), we obtain the following energy balance:

T∫
0

ÿbẏbdτ+

T∫
0

Kybẏbdτ = −
T∫
0

Cẏ2bdτ−
T∫
0

2∑
j=1

(
2∑
i=1

Aij(ψ̈ij cosψij − ψ̇2ij sinψij)
)
ẏbdτ.

(14)
The left-hand side of Eq. (14) represents an increase in the total energy of the beam
which for the periodic oscillations is equal to zero:

T∫
0

ÿbẏbdτ +

T∫
0

Kybẏbdτ = 0. (15)

The first component of the right-hand side of Eq. (14) represents the energy dissipated
by the linear damper C:

WDAMP
beam =

T∫
0

Cẏ2bdτ, (16)

whereas the second component represents the work performed by horizontal compo-
nents of the force with which the double pendula act on the beam causing its motion:

WDRIVE
beam = −

T∫
0

2∑
j=1

(
2∑
i=1

Aij(ψ̈ij cosψij − ψ̇2ij sinψij)
)
ẏbdτ. (17)

Substituting Eqs. (16) and (17) into Eq. (14), we get:

WDRIVE
beam −WDAMP

beam = 0. (18)

Multiplying the equation of the upper pendulum (Eq. (3)) by the velocity ψ̇i1, we
obtain:

δi1ÿbψ̇i1 cosψi1 + Li1ψ̈i1ψ̇i1 + Li3ψ̈i2ψ̇i1 cos(ψi1 − ψi2) = −Li3ψ̇i1ψ̇2i2 sin(ψi1 − ψi2)
−Gi1ψ̇i1 sin(ψi1)−Cvdp(1− µψ2i1)ψ̇2i1 +Ci2(ψ̇i2 − ψ̇i1)ψ̇i1. (19)

Assuming that the oscillations of the pendula are periodic with the period T and
integrating Eq. (19), one obtains the following energy balance:

T∫
0

Li1ψ̈i1ψ̇i1dτ +

T∫
0

Gi1ψ̇i1 sinψi1dτ = −
T∫
0

δi1ÿbψ̇i1 cosψi1dτ

−
T∫
0

Li3(ψ̇i1ψ̇
2
i2 sin(ψi1 − ψi2) + ψ̈i2ψ̇i1 cos(ψi1 − ψi2))dτ

−
T∫
0

Cvdpψ̇
2
i1dτ +

T∫
0

Cvdpµψ
2
i1ψ̇

2
i1dτ +

T∫
0

Ci2ψ̇i2ψ̇i1dτ −
T∫
0

Ci2ψ̇
2
i1dτ. (20)

The left side of Eq. (20) represents the total energy of the upper pendula, which in
the case of periodic oscillations is equal to zero:

T∫
0

Li1ψ̈i1ψ̇i1dτ +

T∫
0

Gi1ψ̇i1 sinψi1dτ = 0. (21)
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The first component of the right side of Eq. (20) represents the energy which is
transferred to the beam:

W SYN
i1 =

T∫
0

δi1ÿbψ̇i1 cosψi1dτ. (22)

The second component describes the energy which is transferred to the lower pendu-
lum:

WSYN P
i1 = −

T∫
0

Li3(ψ̇i1ψ̇
2
i2 sin(ψi1 − ψi2) + ψ̈i2ψ̇i1 cos(ψi1 − ψi2))dτ, (23)

and the third component describes the energy which is supplied to the system by the
van der Pol damper in one-period oscillations:

WDAMP
i1 = −

T∫
0

(Cvdp +Ci2)ψ̇
2
i1 −Ci2ψ̇i2ψ̇i1dτ. (24)

Finally, the last component represents the energy dissipated by the van der Pol
damper:

W SELF
i1 = −

∫ T
0

µCvdpψ
2
i1ψ̇

2
i1dτ, (25)

Substituting Eqs. (22–25) into Eq. (20), we obtain the following relation:

WSY N P
i1 −WSY N

i1 +WSELF
i1 +WDAMP

i1 = 0,

Multiplying the equation of the lower pendulum (Eq. (4)) by the velocity ψ̇i2, one
gets:

δi2ÿbψ̇i2 cosψi2 + Li3ψ̈i1ψ̇i2 cos(ψi1 − ψi2) + Li2ψ̇i2ψ̈i2 = (26)

Li3ψ̇
2
i1ψ̇i2 sin(ψi1 − ψi2)−Gi2ψ̇i2 sin(ψi2)−Ci2(ψ̇i2 − ψ̇i1)ψ̇i2.

Assuming that the oscillations of the pendulum are periodic with the period T , the
integration of Eq. (26) gives the following energy balance:

T∫
0

Li2ψ̇i2ψ̈i2dτ +

T∫
0

Gi2ψ̇i2 sin(ψi2)dτ = −
T∫
0

βi2ÿbψ̇i2 cosψi2dτ

−
T∫
0

Li3(ψ̇
2
i1ψ̇i2 sin(ψi1 − ψi2)− ψ̈i1ψ̇i2 cos(ψi1 − ψi2))dτ

−
T∫
0

Ci2ψ̇
2
i2dτ +

T∫
0

Ci2ψ̇i1ψ̇i2dτ. (27)

The left side of Eq. (27) represents the total energy of the lower pendulum, which in
the case of periodic oscillations is equal to zero:

T∫
0

Li2ψ̇i2ψ̈i2dτ +

T∫
0

Gi2ψ̇i2 sin(ψi2)dτ = 0. (28)
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The first component of the right side of Eq. (27) represents the energy which is
transferred to the beam via the upper pendulum or to the next pendulum via the
upper pendulum and the beam:

WSY N
i2 =

T∫
0

δi2ÿbψ̇i2 cosψi2dτ. (29)

The second component describes the energy which is transferred to the upper pen-
dulum:

WSYN P
i2 = −

T∫
0

Li3(ψ̇
2
i1ψ̇i2 sin(ψi1 − ψi2)− ψ̈i1ψ̇i2 cos(ψi1 − ψi2))dτ. (30)

and the last component represents the energy dissipated by the damper:

WDAMP
i2 = −

T∫
0

Ci2(ψ̇i2 − ψ̇i1)ψ̇i2dτ (31)

Substituting Eqs. (29–31) into Eq. (27), one obtains the following relation:

W SYN P
i2 −W SYN

i2 +WDAMP
i2 = 0.

3.3 Energy transfer between the upper and lower pendula

The energy transferred from the upper to lower pendulum is given by:

W SYN P
i1 = −

T∫
0

Li3(ψ̈i2 cos(ψi1 − ψi2) + ψ̇2i2 sin(ψi1 − ψi2))ψ̇i1dτ, (32)

and the energy transferred from the lower to upper pendulum is:

WSYN P
i2 = −

T∫
0

Li3(ψ̈i1 cos(ψi1 − ψi2)− ψ̇2i1 sin(ψi1 − ψi2))ψ̇i2dτ. (33)

Taking into account Eqs. (5–7), Eq. (33) takes the form:

WSYN P
i1 = −Li3

T∫
0

(−ω20Φi2 sin(ω0t+ βi2) cos(Φi1 sin(ω0t+ βi1)−Φi2 sin(ω0t+ βi2))

+ω20Φ
2
i2 cos

2(ω0t+ βi2) sin(Φi1 sin(ω0t+ βi1)

−Φi2 sin(ω0t+ βi2)))ω0Φi1 cos(ω0t+ βi1)dτ
= Li3πω

2
0Φi1Φi2 sin(βi2 − βi1), (34)

and

W SYN P
i2 = Li3πω

2
0Φi1Φi2 sin(βi1 − βi2) = −W SYN P

i1 , (35)

The synchronization between the lower and upper pendula occurs when:

W SYN P
i1 = 0 ⇒ sin(βi1 − βi2) = 0. (36)
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Condition (36) is fulfilled when:

βi1 = βi2 ∨ (βi1 = 0 ∧ βi2 = π). (37)

In the first case, the oscillations of the upper and lower pendula are in-phase, i.e.,
the pendula move in the same directions, whereas in the second case they are in anti-
phase, i.e., the pendula move in the opposite directions. For low oscillations, limit
conditions (37) define two normal modes of oscillations [1].

3.4 Synchronization of the double pendula

In each equation of the pendulum motion, there is a component influencing the beam
motion

MSY N
ij = δij ÿb cosψij , (38)

which is called the synchronization momentum (torque). The work done by this mo-
mentum during one period is equal to zero.

WSY N
ij =

∫ T
0

δij ÿb cosψijψ̇ijdτ = 0. (39)

Substituting Eqs. (5, 6) and (11) into (39) and performing the linearization, we arrive
at:

WSY N
11 =

∫ T
0

δ11


 2∑
i=1

2∑
j=1

A1ijAij sin(ω0t+ βij) +

2∑
i=1

2∑
j=1

A3ijAij sin(3ω0t+ 3βij)




×ω0Φ11 cos(ω0t+ β11)dτ =

= δ11ω0πΦ11

2∑
i=1

2∑
j=1

A1ijAij sin(βij − β11) =

= ξδ11Φ11


 2∑
i=1

2∑
j=1

ΘijMij sin(βij − β11)

 = 0,

WSY N
12 = ξδ12Φ12


 2∑
i=1

2∑
j=1

ΘijMij sin(βij − β12)

 = 0,

WSY N
21 = ξδ21Φ21


 2∑
i=1

2∑
j=1

ΘijMij sin(βij − β21)

 = 0,

WSY N
22 = ξδ22Φ22


 2∑
i=1

2∑
j=1

ΘijMij sin(βij − β22)

 = 0, (40)

where:

ξ =
−ω50π

Mlb(K− ω20)
, Mi1 = (mi1+mi2)li1, Mi2 = mi2li2, Θij = Φij(1+0.25Φ

2
ij).

(41)
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Fig. 2. Synchronous states of the system (1): (a) upper and lower pendula in phase: ψ11 =
ψ21 and ψ12 = ψ22, (b) upper pendula in phase, lower pendula in anti-phase: ψ11 = ψ21 and
ψ12 = −ψ22, (c) upper and lower pendula in anti-phase: ψ11 = −ψ21 and ψ12 = −ψ22 (d)
upper pendula in anti-phase, lower pendula in phase: ψ11 = −ψ21 and ψ12 = ψ22.

Equations (40) allow the calculation of the phase angles βij for which the synchro-
nization of periodic oscillations of the pendula occurs. The synchronization occurs
when the following equations are fulfilled:

Θ12M12 sin(β12 − β11) + Θ21M21 sin(β21 − β11) + Θ22M22 sin(β22 − β11) = 0,
Θ11M11 sin(β11 − β12) + Θ21M21 sin(β21 − β12) + Θ22M22 sin(β22 − β12) = 0,
Θ11M11 sin(β11 − β21) + Θ12M12 sin(β12 − β21) + Θ22M22 sin(β22 − β21) = 0,
Θ11M11 sin(β11 − β22) + Θ12M12 sin(β12 − β22) + Θ21M21 sin(β21 − β22) = 0.

(42)

Equations (42) are fulfilled for βij , which are combinations of 0 and π. Assum-
ing that β11 = 0, one can identify the following pendulum configurations which are
presented in Fig. 2(a–d). The first type is the configuration shown in Fig. 2(a). Both
the upper and lower pendula are phase synchronized, i.e., ψ11 = ψ21 and ψ12 = ψ22
(β11 = β12 = β21 = β22 = 0 or β11 = β21 = 0, β12 = β22 = π). The upper and lower
pendula are synchronized in phase and anti-phase, respectively, i.e., ψ11 = ψ21 and
ψ12 = −ψ22 in the configuration from Fig. 2(b) (β11 = β12 = β21 = 0, β22 = π or
β11 = β12 = β22 = 0, β21 = π). Figure 2(c) presents the case when both the upper
and lower pendula are synchronized in anti-phase, i.e., ψ11 = −ψ21 and ψ12 = −ψ22
(β11 = β12 = 0, β21 = β22 = π or β11 = β22 = 0, β12 = β21 = π). Finally, in Fig. 2(d),
we present the case when the upper pendula are in anti-phase and the lower pendula
are in phase ψ11 = −ψ21 and ψ12 = ψ22 (β11 = β12 = β22 = 0, β21 = π or β11 = 0,
β21 = β12 = β22 = π).

4 Numerical investigations

In our numerical calculations, we use the Auto 07p [29] continuation toolbox to
obtain periodic solutions. To start path-following, we integrate Eqs. (2–4) with
the fourth-order Runge-Kutta method. We consider the following parameter values:
m11 = m12 = m21 = m22 = 1.0 [kg], M = 10.0 [kg], l11 = l12 = l21 = l22 = 0.2485 [m],
kx = 4.0 [N/m], cx = 1.53 [Ns/m], cvdp = −0.1 [Ns/m], µ = 60.0 [m−2], ci2 =
0.0016 [Ns/m], which yield the following dimensionless coefficients Ai1 = 0.0354986,
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Fig. 3. Pendulum and beam displacements for one period of motion (N = 1) for four different
periodic solutions in the case of identical masses of the pendula: m11 = m12 = m21 = m22 =
1.0 [kg]. The displacement yb of the beam M is shown 10 times magnified. (a) pendulum
configuration from Fig. 2(a) with the period T = 7.233, (b) pendulum configuration from
Fig. 2(a) with the period T = 3.362, (c) pendulum configuration from Fig. 2(c) with the
period T = 3.748, and (d) pendulum configuration from Fig. 2(c) with the period T = 8.266.

Ai2 = 0.01774933, δi1 = 0.142857, δi2 = 0.0714286, Li1 = 0.035986, Li2 = 0.0177493,
Li3 = 0.0177493, Gi1 = 0.0354986, Gi2 = 0.0177493, Cvdp = −0.00457491,
Ci2 = 0.0000714286, C = 0.0173934, K = 0.00723723. Our bifurcation parameters
are masses of the pendula and the beam. To hold an intuitive physical interpretation,
we change dimensional masses, but all the calculation are performed for dimensionless
equations.

4.1 Periodic solutions to the pendula with identical masses

Depending on the initial conditions, we observe four different synchronous states of
system (2–4) as shown in Fig. 3(a–d). The in-phase motion is represented by two
periodic solutions: the first type is characterized by a lack of phase differences in
the pendulum angular positions: β11 = β21 = β12 = β22 (see Fig. 3(a)), whereas
the second one - by a phase difference between the upper and lower pendula in each
double pendulum: β11 = β21, β12 = β22 and βi1 − βi2 = π, i = 1, 2 (see Fig. 3(b)).
In both cases, the displacements of the upper and lower pendula of each double
pendulum are identical, i.e., ψ11 = ψ21, ψ12 = ψ22. The beam motion is in anti-phase
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to the upper pendula and in-phase (Fig. 3(a)) or anti-phase (Fig. 3(b)) to the lower
ones. These two configurations correspond to the analytically predicted synchronous
state presented in Fig. 2(a). The second type, the anti-phase motion, for which the
beam is not moving, is shown in Fig. 3(c,d). We can also distinguish two types of
this periodic solution, both characterized by the following phase differences of the
pendulum displacements: β11 − β21 = π and β12 − β22 = π, but different phase shifts
between the pendula in each double pendulum: βi1 − βi2 = π, i = 1, 2 (see Fig. 3(c))
and βi1 − βi2 = 0, i = 1, 2 (see Fig. 3(d)). The beam M is at rest, because reaction
forces acting on the beam are vanishing. These pendulum configurations correspond
to the theoretically predicted synchronous state presented in Fig. 2(c). Note that
for this type of the synchronous state, amplitudes of pendulum oscillations can be
estimated analytically. Substituting β11 = β12 = 0 and β21 = β22 = π in Eqs. (42),
one can derive an analytical formula for amplitudes of pendulum oscillations. The
amplitudes of the upper pendula can be approximated by:

Φ11 = Φ21 = 2

√
1

µ
. (43)

The approximate values of the amplitudes of oscillations of the lower pendula can be
calculated from the following condition:

1

4
ω0π(4Ci2(Φ

2
i1 +Φ

2
i2) +CvdpΦ

2
i1(4− µΦ2i1)− 8Ci2Φi1Φi2 cos(βi1 − βi2) (44)

+Φi1Φi2(Φ
2
i2 − Φ2i1)Li3ω0 sin(βi1 − βi2)) = 0

For i = 1, 2, formulae (43) and (45) give good approximation of the numerical values,
e.g., for the parameter values in Fig. 3(c,d), the analytically calculated amplitudes of
the upper and lower pendula are Φ11 = Φ21 = 0.2581 and Φ12 = Φ22 = 0.4244, respec-
tively, whereas the numerical values are Φ11 = Φ21 = 0.2522 and Φ12 = Φ22 = 0.3536
for Fig. 3(c) and Φ12 = Φ22 = 0.2579 and Φ12 = Φ22 = 0.3732 for Fig. 3(d). In
Fig. 3(a,d), one can see that the pendula do not pass through zero (the hanging down
position) at the same moment of time, whereas in Fig. 3(b,c) the pendula cross this
position simultaneously. The phase shift is observed only when the lower and upper
pendula in each double pendulum are oscillating in-phase with non-zero damping be-
tween them.
We do not observe the configurations shown in Fig. 2(b,d) because each of the double
pendulum has to reach different normal modes of oscillations for the same frequency
for both of them. This is proven to be impossible in the low oscillation approximation
[1] (the angular positions have to be much higher than the one considered in this
paper).
The periodic solutions presented in Fig. 3(a,b,d) are stable, whereas the one from

Fig. 3(c) is unstable. To show how a change in the natural frequency of the beam
affects the stability of the periodic solutions obtained, we calculate one-parameter
bifurcation diagrams. We choose the beam mass M as the bifurcation parameter
and vary it in the range from 0.01 [kg] to 20.0 [kg]. In the case of two solutions: one
in-phase (Fig. 3(b)) and one anti-phase (Fig. 3(d)), we do not observe any desta-
bilization of periodic solutions. For the two others, we present bifurcation diagrams
showing the maximum amplitudes of the beam oscillation max yb on the vertical
axes. The black and gray colors of branches correspond to stable and unstable peri-
odic solutions. For the branch presented in Fig. 4(a), we start a continuation from
the in-phase periodic solution shown in Fig. 3(a). Originally, the stable periodic orbit
becomes unstable with a decreasing beam mass M in the Neimark-Sacker bifurca-
tion for M = 3.88 [kg]. The Neimark-Sacker bifurcation point corresponds also to
the maximum amplitude of the beam. In Fig. 4(b), we show a continuation of the
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Fig. 4. One-parameter path-following of periodic solutions for the varying mass M of the
beam: (a) in-phase motion from Fig. 3(a) and (b) anti-phase motion from Fig. 3(c). The
black and gray lines correspond to stable and unstable periodic solutions, respectively. The
abbreviation NS stands for the Neimark-Sacker bifurcation and PT denotes the pitchfork
bifurcation. Bifurcations along unstable branches are neglected. The starting points of con-
tinuation are marked by black dots.

anti-phase oscillations of the pendula (Fig. 3(c)). The stabilization of this type of the
periodic solution occurs in the supercritical pitchfork bifurcation (two new branches
emerge) for M = 1.737 [kg]. In the symmetric anti-phase motion, the beam is at rest
and the maximum amplitudes of the pendula remain the same. For the asymmetric
periodic solutions along two overlapping branches, the beam is oscillating with a low
amplitude and we observe a difference between amplitudes of the pendula. The asym-
metric motion destabilizes with an increase in the beam mass M in Neimark-Sacker
bifurcations for M = 2.06 [kg].

4.2 Periodic solutions of the pendula with different masses – exploring symmetry

In this subsection, we investigate the stability of symmetric motion of the pendula
from Fig. 3(c,d), which corresponds to anti-phase synchronization states. We de-
crease the masses m12 and m22 of the lower pendula in the range (0.0, 1.0] [kg]. We
choose masses of the lower pendula as the bifurcation parameter because we want to
avoid a situation where the lightweight upper pendula excite the much heavier lower
pendula.
In Fig. 5(a,b) we present bifurcation diagrams, i.e., the maximum amplitudes

of the beam (a) and the second upper pendulum (b) for decreasing masses of the
lower pendula. As an initial state, we take the anti-phase periodic solution for which
all pendula have identical masses (see Fig. 3(d)). For m12 = m22 = 0.108 [kg],
the symmetry is broken in the subcritical pitchfork bifurcation. We observe an ap-
pearance of two unstable branches which stabilize in saddle-node bifurcations for
m12 = m22 = 0.107 [kg], a further loss of stability occurs in the supercritical Neimark-
Sacker bifurcations for m12 = m22 = 0.105 [kg], hence two stable quasi-periodic solu-
tions appear. This scenario is observed only when the system has symmetry. The bifur-
cation diagram for a system without symmetry (m11 = 1.0 [kg] and m12 = 0.99 [kg])
is shown in Fig. 5(c,d). We present the maximum amplitudes of the upper pendula in
the range mi2 ∈ (0.0, 0.15] [kg] (for mi2 ∈ (0.15, 1.0] [kg], solutions are stable). As can
be easily predicted, the pitchfork bifurcation is no more present and we observe two
disconnected branches of periodic solutions (the imperfect pitchfork bifurcation). As
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Fig. 5. In (a,b) we show one-parameter path-following of the anti-phase synchronous mo-
tion starting from the periodic solution shown in Fig. 3(d). The changes in the maximum
amplitude of the beam max yb (a) and the second upper pendulum max ψ12 (b) are shown
for decreasing masses of the lower pendula mi2 = (0.0, 1.0] [kg] (i = 1, 2), whereas the up-
per pendula have masses equal to 1.0 [kg]. In (c,d) the same calculations are performed for
asymmetrical masses of the upper pendula (m11 = 1.0 [kg] , m21 = 0.99 [kg]) in the range
mi2 ∈ (0.0, 0.15) [kg] (i = 1, 2), formi2 ∈ (0.15, 1.0) [kg] (i = 1, 2), solutions are stable. The
black and gray lines correspond to stable and unstable periodic solutions, respectively. The
abbreviations correspond to: PT – pitchfork bifurcation, NS – Neimark-Saker bifurcation,
and SN – saddle-node bifurcation. Bifurcations along unstable branches are neglected.

one can see, the maximum amplitudes of the lower pendula start to diverge close to the
destabilization and the second lower pendulum has nearly twice a higher amplitude
than the first one in the Neimark-Saker bifurcation point (m12 = m22 = 0.103 [kg]).
Close to the Neimark-Saker bifurcation located on the main branch, one can ob-
serve an appearance of the second branch which starts and disappears in saddle-
node bifurcations. The stable part of this branch is bounded by the saddle-node
(m12 = m22 = 0.1019 [kg]) and the Neimark-Sacker (m12 = m22 = 0.1047 [kg]) bifur-
cations and there is a similar difference in amplitudes between the lower and upper
pendula as for the main branch. The stability range of this separated branch in the
two-parameter space is studied in the next subsection.
The same analysis is performed for the periodic solution shown in Fig. 3(c),

which is originally unstable. In Fig. 6(a) one can see that the maximum amplitude
of the beam max yb with decreasing masses of the lower pendula m12 and m22 re-
mains zero (symmetry is maintained) in the whole range under consideration. For
m12 = m22 = 0.05 [kg], we observe the subcritical pitchfork bifurcation, where sym-
metric solutions stabilize and stay stable nearly to m12 = m22 ≈ 0.0 [kg]. The second
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Fig. 6. One-parameter path-following of the anti-phase synchronous periodic solutions from
Fig. 3(c). A change in the maximum amplitude of the beam max yb (a) and the sec-
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branch corresponds to the asymmetric unstable periodic motion with low oscilla-
tions of the beam. All branches coming from the pitchfork bifurcation can be seen
in Fig. 6(b), where we show the maximum amplitude of the second upper pendulum
max ψ12. To have a general overview, we increase the masses m12 and m22 but the
stability properties do not change, hence the periodic solutions along all branches
stay unstable.

4.3 Ranges of stability of synchronous solutions in the two-parameter space

In this subsection, we show how asymmetric changes of pendulum masses influence
the stability of the previously present periodic solutions. In all cases we start with
the pendulum configuration obtained for the identical double pendula (configurations
from Fig. 3(a–d)). We change the mass of the second upper pendulumm21 (in different
intervals for each periodic solutions) and the masses of the lower pendula m12 = m22
in the interval (0.0, 1] [kg]. Our calculations are presented on the two-dimensional
bifurcation diagrams (masses of the lower pendula m12 = m22 versus the mass of the
second upper pendulum m21).
In Fig. 7(a) we show stability ranges of the configuration presented in Fig. 3(d).

The solution is bounded by the Neimark-Sacker bifurcation, hence we observe an
appearance of the quasi-periodic motion outside this range. The bifurcation scenario
which occurs for m21 = 1.0 [kg] is different from the other ones because of the pres-
ence of symmetry. The stability at the bottom is lost not via the Neimark-Sacker but
through the pitchfork bifurcation. When the symmetry is broken (m21 �= 1.0 [kg]), the
pitchfork bifurcation in no more present but there exists a disconnected stable range
of periodic solutions (coming from the ‘second’ branch – see Fig. 5(c,d)). The area of
existence of these asymmetric period solutions is presented in Fig. 7(b). As shown in
Fig. 5(c,d), the stable range is bounded by the Neimark-Sacker bifurcation (from the
bottom) and the saddle-node bifurcation line from the top. This area is small and
when the difference of masses of the upper pendula (m11 and m21) becomes larger
than a few percent, it disappears.
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Fig. 7. In (a) two-parameter continuation of the anti-phase synchronization periodic solution
(the beam is at rest - see Fig. 3(d)) for the massesm21 andmi2 ∈ (0.0, 1.0] [kg]. The observed
stable periodic solutions destabilize thought the Neimark-Sacker bifurcations. When the
system is symmetric (m21 = 1.0 [kg]), the Neimark-Sacker bifurcation is interchanged by the
pitchfork bifurcation. In (b) two-parameter plot for the masses m21 and mi2 ∈ (0.0, 1.0] [kg]
of the disconnected branch (see Fig. 5(c,d)). Stable periodic solutions destabilize through
the Neimark-Sacker (continuous line) and saddle-node (dashed line) bifurcations. The gray
shaded area corresponds to the existence of stable periodic solutions, whereas the white one
to the unstable solution.

One can distinguish two types of the in-phase motion: the first one where all pen-
dula are in-phase (Fig. 3(a)) and the second one where the upper and lower pendula
are in-phase but in anti-phase to each other (Fig. 3(b)). To investigate the first type
of motion, we follow the periodic solution in the two-parameter space (similarly as
for the anti-phase motion). The results of calculations are presented in Fig. 8(a,b).
As can be easily seen, the stable area is much larger than in the previous case. So-
lutions destabilize similarly in the Neimark-Sacker bifurcations, which results in an
appearance of the quasi-periodic motion. For a decreasing mass m21, we observe a
rapid jump around m21 = 0.5 [kg] from mi2 ≈ 0.08 [kg] to mi2 ≈ 0.7 [kg], for an in-
crease in m21, the bound of bifurcation grows nearly linearly reaching mi2 = 1.0 [kg]
for m21 = 4.6 [kg]. The zoom of the majority of the left part is presented in 8(b),
where one can see that the Neimark-Sacker bifurcation line has a complex structure.
The gap for mi2 corresponds to an appearance of the quasi-periodic motion in the
Neimark-Sacker bifurcation and its disappearance in the inverse Neimark-Sacker bi-
furcation.
In Fig. 8(c) we present a one-parameter plot which shows a connection between

the unstable anti-phase solution (Fig. 3(c)) and the stable in-phase solution (Fig.
3(b)). The starting solution is the unstable one (m21 = 1.0 [kg] and max yb = 0.0)
with an increasing mass, we do not observe changes in stability – the unstable branch
turns around and reaches m12 ≈ 0.0 [kg]. Following the second direction results in a
change of stability in the saddle-node bifurcation (m21 = 0.837 [kg]) and then desta-
bilization in the Neimark-Sacker bifurcation (m21 = 1.38 [kg]). For m21 = 1.0 [kg],
the stable solution corresponds to the solution presented in Fig. 3(b). Next, we follow
the bifurcation which bounds the stable branch in the two-parameter space (m21 and
mi2), which is shown in Fig. 8(d). The stable range stays narrow up to mi2 ≈ 0.3 [kg]
where the Neimark-Sacker bifurcation line changes the direction and starts to go up.
When the mass of the upper pendulum is large enough (m21 > 11.0 [kg]), we once
again can observe a stable solution for mi2 = 1.0 [kg]. From the left-hand side, as has
been mentioned before, the stable area is bounded by the saddle-node bifurcation line
and is nearly a constant line around m21 = 0.84 [kg].
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Fig. 8. In (a,b) two-parameter continuation of the in-phase synchronization periodic so-
lution (the beam is in the anti-phase state to all pendula) for the masses m21 and
mi2 ∈ (0.0, 1.0] [kg]. The observed stable periodic solutions destabilize through the Neimark-
Sacker bifurcation. In (c) one-parameter (m21) plot which shows the connection between the
unstable anti-phase solution (Fig. 3(c)) and the stable in-phase solution (Fig. 3(b)), where
the gray and black lines correspond to stable and unstable periodic solutions. Then, in (d)
two-parameter plot for the masses m21 and mi2 ∈ (0.0, 1.0] [kg]. Stable periodic solutions
destabilize through the Neimark-Sacker (continuous line) and saddle-node (dashed line) bi-
furcations. The gray shaded area corresponds to the existence of stable periodic solutions,
whereas the white one to the unstable solution.

5 Conclusions

Our studies show that two self-excited double pendula with the van der Pol type of
damping, hanging from the horizontally movable beam, can synchronize. For identi-
cal pendula, four different synchronous configurations are possible (in-phase or anti-
phase), but not all of them are stable for the given parameters of the beam. When the
pendula are nonidentical, i.e., have different masses, we observe synchronous states
for which the phase difference between the pendula is close to 0 or π for a small
parameter mismatch. With an increase in this difference, we observe a stable solution
with phase shifts between 0 and π. They finally destabilize in the Neimark-Sacker
saddle-node bifurcations, which results in an appearance of unsynchronized quasi-
periodic oscillations or a jump to another attractor. Similar synchronous states have
been observed experimentally in [28] but a special controlling procedure has been
applied to stabilize them.
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The observed behavior of system (1) can be explained by the energy expressions
derived in Section 3, which also show why other synchronous states are not possible.
We prove that the observed behavior of the system is robust as it occurs in a wide
range of system parameters.

This work has been supported by the Foundation for Polish Science, Team Programme under
the project TEAM/2010/5/5.
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We consider the synchronization of n self-excited double pendula. For such pendula hanging on

the same beam, di®erent synchronous con¯gurations can be obtained (in-phase and anti-phase
states). An approximate analytical analysis allows to derive the synchronization condition and

explain the observed types of synchronization for any number of coupled double pendula. The

energy balance method is used to show how the energy between the pendula is transferred via
the oscillating beam allowing their synchronization. We compute periodic solutions for n ¼
2; 3; 4; 5 coupled double pendula, based on analytical predictions. For all obtained periodic

solutions, we investigate how the stability properties change with the varying natural frequency

of the beam.

Keywords: Double pendula; phase synchronization; synchronization in clusters.

1. Introduction

Synchronization is common state in systems of coupled oscillators.1–7 The interac-

tions between connected systems often lead to oscillations where systems perform

identical dynamics or oscillate with constant phase shift. The history of synchroni-

zation goes back to the 17th century. In 1673, the Dutch scientist Ch. Huygens

observed the anti-phase synchronization of two pendulum clocks8 hung on the same

wall. Recently, the dynamics of coupled pendula have been the subject of investi-

gations conducted by numerous authors.8–17 These studies explain the phenomenon

of synchronization, show its properties and give detailed explanation of interactions

between single coupled pendula.

In our work, we consider an interaction between two double pendula. One of the

¯rst investigations on dynamics of the double pendulum can be found in the paper by

Rott,18 where an analytical investigation of the Hamiltonian system is presented for
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di®erent ratios between natural frequencies of the pendula. The next results obtained

by Miles19 describe dynamics of double pendulum under parametric excitation

around the 2:1 resonance. A mode interaction in the double pendulum, including a

detailed bifurcation analysis near two multiple bifurcation points and a transition to

quasi-periodic motion and chaos around the 2:1 parametric resonance, are presented

in Refs. 20–22. Similarly, as for 2:1, the 1:1 resonance leads to dynamics that includes

multiple bifurcation points, symmetry breaking points and cascades of period dou-

bling bifurcations.22 Double pendula can also be considered as an example of many

physical systems commonly met in engineering, e.g. a model of bridge-pedestrian

interactions,23 golf or hockey swing interactions with arms,24 human body25 or

trunk26 models. The investigation performed for two double pendula hung on moving

beam27,28 show that in such a system we observe four types of di®erent synchronous

solutions for identical pendula. Generally speaking, such systems are globally cou-

pled multi-dimensional networks, so one can expect a coexistence of multiple

attractors of di®erent types (periodic, quasiperiodic and chaotic), see Refs. 10, 29–31.

In this paper, we consider the synchronization of n self-excited double pendula.

The oscillations of each double pendulum are self-excited by the van der Pol type of

damping associated with the upper parts (upper pendula) of each double pendulum.

The analytical condition which let us ¯nd the synchronous states is derived by the

energy balance method. For n ¼ 2; 3; 4; 5 pendula, we show possible synchronous

con¯gurations and shape of periodic solutions. Finally, the results are generalized for

n coupled double pendula.

This paper is organized as follows: Section 2 describes the considered model of n

coupled double pendula. In Sec. 3, we show the analytical condition which let us ¯nd

synchronous states, whereas Sec. 4 presents the shape of periodic solutions, their

stability changes with the change of the beam's natural frequency and generalization

of obtained results for an arbitrary number of coupled double pendula. Finally, we

summarize our results in Sec. 5.

2. Model of the System

The analyzed system is shown in Fig. 1. It consists of a rigid beam and n double

pendula suspended on it. The beam of the mass M can move along the horizontal

direction and its position is described by the coordinate xb. The beam is connected to

a linear spring with sti®ness kx and a linear damper described by the viscous damping

coe±cient cx.

Each double pendulum consists of two light beams and masses mounted at their

ends. The length of ith upper pendulum and ith lower pendulum is given by li1 and li2
(i ¼ 1; . . . ;n), respectively. Masses are concentrated at the end of ith upper and ith

lower pendulum and described by mi1 and mi2, respectively. We consider double

pendula with the same lengths li1 ¼ li2 ¼ l but di®erent masses mi1 and mi2 (to

maintain generality in the derivation of equations, we preserve indexes for pendula's

lengths). The motion of each double pendulum is described by the angles ’i1

P. Koluda, P. Brzeski & P. Perlikowski

1440028-2

In
t. 

J.
 S

tr
. S

ta
b.

 D
yn

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r 

Pr
ze

m
ys

la
w

 P
er

lik
ow

sk
i o

n 
08

/0
6/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



(upper pendulum) and ’i2 (lower pendulum). The upper pendula are self-excited by

the van der Pol type of damping (not shown in Fig. 1) given by the momentum

(torque) cvdp’
:
1ið1� �’2

1iÞ, where cvdp and � are constant. Stable limit cycles are

generated as a result of van der Pol damping.1 The lower pendula are damped with a

viscous damper with the coe±cient ci2. The equations of motion of the considered

system are as follows:

M þ
X2
i¼1

X2
j¼1

mij

 !
€xb þ

X2
i¼1

ðmi1 þmi2Þli1ð’::i1 cos’i1 � ’
: 2
i1 sin’i1Þ

þ
X2
i¼1

mi2 li2ð’::i2 cos’i2 � ’
: 2
i2 sin’i2Þ þ kxxb þ cx _xb ¼ 0;

ðmi1 þmi2Þli1 €xb cos’i1 þ ðmi1 þmi2Þl2i1’::i1
þmi2 li1 li2’

::
i2 cosð’i1 � ’i2Þ þmi2 li1 li2’

: 2
i2 sinð’i1 � ’i2Þ

þ ðmi1 þmi2Þli1g sinð’i1Þ þ cvdpð1� �’2
i1Þ’: i1 þ ci2ð’: i2 � ’

:
i1Þ ¼ 0;

mi2 li2 €xb cos’i2 þmi2 li1 li2’
::
i1 cosð’i1 � ’i2Þ þmi2 l

2
i2’
::
i2

�mi2 li1 li2’
: 2
i1 sinð’i1 � ’i2Þ þmi2 li2g sinð’i2Þ � ci2ð’: i2 � ’

:
i1Þ ¼ 0;

ð2:1Þ

where i ¼ 1; . . . ;n. Introducing the dimensionless time � ¼ !t, where !2 ¼ g
l11

is the

natural frequency of the upper pendula, we can rewrite Eq. (2.1) in the dimensionless

form as:

€y b þ
X2
i¼1

Ai1ð 
::
i1 cos i1 �  

: 2
i1 sin i1Þ

þ
X2
i¼1

Ai2ð 
::
i2 cos i2 �  

: 2
i2 sin i2Þ þKyb þC _y b ¼ 0; ð2:2Þ

m12

m11

11

12

l11

l12

m22

l22

m21

21

22

l21

Mkx

cx

xb

n1

mn2

ln2

mn1

ln1

n2

Fig. 1. Model of the system — n double pendula are mounted to the beam which can move horizontally.

Each double pendulum consists of an upper pendulum of the length li1 and the mass mi1 and a lower

pendulum of the length li2 and the mass mi2 (i ¼ 1; . . . ;n). The upper pendula are self-excited and lower

pendula have damper in their pivots.
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1440028-3

In
t. 

J.
 S

tr
. S

ta
b.

 D
yn

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r 

Pr
ze

m
ys

la
w

 P
er

lik
ow

sk
i o

n 
08

/0
6/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



�i1 €y b cos i1 þ Li1 
::
i1 þ Li3 

::
i2 cosð i1 �  i2Þ

¼ �Li3 
: 2
i2 sinð i1 �  i2Þ �Gi1 sinð i1Þ �Cvdpð1� � 2

i1Þ 
:
i1

� Ci2ð 
:
i2 �  

:
i1Þ; ð2:3Þ

�i2 €y b cos i2 þ Li3 
::
i1 cosð i1 �  i2Þ þ Li2 

::
i2

¼ Li3 
: 2
i1 sinð i1 �  i2Þ �Gi2 sinð i2Þ þCi2ð 

:
i2 �  

:
i1Þ; ð2:4Þ

where

Ai1 ¼ ðmi1 þmi2Þli1
Mlb

; Ai2 ¼
mi2 li2
Mlb

; K ¼ kx
M!2

; C ¼ cx
M!

;

�i1 ¼ ðmi1 þmi2Þli1
Ml12

; �i2 ¼
mi2 li2
Ml12

; Li1 ¼
ðmi1 þmi2Þl2i1

l12 lbM
;

Li2 ¼ mi2 l
2
i2

l12 lbM
; Li3 ¼

mi2 li2 li1
lbMl12

; Gi1 ¼
ðmi1 þmi2Þli1g

l12!2lbM
;

Gi2 ¼ mi2 li2g

l12!2lbM
; Cvdp ¼

cvdp
!lbMl12

and Ci2 ¼
ci2

l12!lbM
:

3. Synchronization Condition

3.1. Synchronization condition for coupled double pendula

In this section, we show an analytical condition for synchronous solutions of coupled

double pendula (detailed analysis of two coupled double pendula is presented in

Ref. 28). The derivation of synchronization condition is shown in Appendix A. In our

analytical calculations, we assume that pendula have identical masses and lengths,

i.e. mi1 ¼ mi2 ¼ 1:0 kg and li1 ¼ li2 ¼ 0:2485m (for i ¼ 1; . . . ;n). The analytical

condition is derived assuming that in synchronous state beam is at rest. The only

exception is the case where upper and lower pendula are synchronized in phase

(the upper and lower pendulum can be either in phase or in anti-phase to each other).

For n coupled double pendula, the synchronization condition has the following form

(see Eq. (A.39) in Appendix A):

sinð�21 � �11Þ þ sinð�31 � �11Þ þ � � � þ sinð�i1 � �11Þ ¼ 0

sinð�11 � �21Þ þ sinð�31 � �21Þ þ � � � þ sinð�i1 � �21Þ ¼ 0

..

. ..
.

sinð�11 � �i1Þ þ sinð�21 � �i1Þ þ � � � þ sinð�i�1 1 � �i1Þ ¼ 0

ð3:1Þ
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for i ¼ 1; . . . ;n. This condition can be simpli¯ed using trigonometric identity:

sinð�1 � �2Þ ¼ sin�1 cos�2 � cos�1 sin�2:

cos �11
Xk¼n

k¼1

sin �k1 � sin �11

 !
� sin �11

Xk¼n

k¼1

cos �k1 � cos �11

 !
¼ 0

cos �21
Xk¼n

k¼1

sin �k1 � sin �21

 !
� sin �21

Xk¼n

k¼1

cos �k1 � cos �21

 !
¼ 0

..

. ..
.

cos �n1
Xk¼n

k¼1

sin �k1 � sin �n1

 !
� sin �n1

Xk¼n

k¼1

cos �k1 � cos �n1

 !
¼ 0:

ð3:2Þ

For n ¼ 2, condition (3.2) has only two solutions: �11 ¼ �21 ¼ 0 _ �11 ¼
0 ^ �21 ¼ �, i.e. upper pendula are in phase or anti-phase synchronization, the lower

pendula can be in both cases in-phase or in anti-phase to upper pendula (see Figs. 2

(a) and 2(b)).

For n ¼ 3, Eq. (3.2) take the form:

cos �11ðsin �21 þ sin �31Þ � sin �11ðcos �21 þ cos �31Þ ¼ 0;

cos �21ðsin �11 þ sin �31Þ � sin �21ðcos �11 þ cos �31Þ ¼ 0;

cos �31ðsin �11 þ sin �21Þ � sin �31ðcos �11 þ cos �21Þ ¼ 0:

Therefore, the possible solutions are as follows: �11 ¼ 0 ^ �21 ¼ 2�
3 ^ �31 ¼ 4�

3 or

�11 ¼ �21 ¼ �31. Hence, four di®erent con¯gurations, that are presented in

Figs. 2(c)–2(f), can appear.

For n ¼ 4, system (3.2) takes the form:

cos �11ðsin �21 þ sin �31 þ sin �41Þ � sin �11ðcos �21 þ cos �31 þ cos �41Þ ¼ 0;

cos �21ðsin �11 þ sin �31 þ sin �41Þ � sin �21ðcos �11 þ cos �31 þ cos �41Þ ¼ 0;

cos �31ðsin �11 þ sin �21 þ sin �41Þ � sin �31ðcos �11 þ cos �21 þ cos �41Þ ¼ 0;

cos �41ðsin �11 þ sin �21 þ sin �31Þ � sin �41ðcos �11 þ cos �21 þ cos �31Þ ¼ 0:

Its solutions give us the following phase shifts: �11 ¼ �21 ¼ 0 ^ �31 ¼ �41 ¼ � or

�11 ¼ �21 ¼ �31 ¼ �41. The lower pendula can be in phase or in anti-phase to the

upper pendula. The possible con¯gurations are shown in Figs. 2(g)–2(j). In case

when the number of pendula is greater than four, even one can even observe the anti-

phase synchronization in pairs. In each pair, because of the anti-phase motion, forces

acting on the beam cancel themselves, hence the beam stays at rest. There is no

assumption on the phase shift between pairs of double pendula, hence it can be any

number from 0 to 2�.

Dynamics of n Coupled Double Pendula Suspended to the Moving Beam
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Fig. 2. Synchronous states of the system (2.2)–(2.4): (a), (b) for n ¼ 2 coupled double pendula: (a) upper

and lower pendula in phase: �11 ¼ �21 and �12 ¼ �22, (b) upper and lower pendula in anti-phase: �11 ¼
��21 and �12 ¼ ��22; (c)–(f) for n ¼ 3 coupled double pendula: (c), (d) upper and lower pendula in phase:
�11 ¼ �21 ¼ �31 and �12 ¼ �22 ¼ �32, (e), (f) upper and lower pendula shifted by 2�

3 : �11 ¼ 0 ^ �21 ¼
2�
3 ^ �31 ¼ 4�

3 and �12 ¼ 0 ^ �22 ¼ 2�
3 ^ �32 ¼ 4�

3 ; (g)–(j) for n ¼ 4 coupled double pendula: (g), (h) upper

and lower pendula in phase: �11 ¼ �21 ¼ �31 ¼ �41 and �12 ¼ �22 ¼ �32 ¼ �42, (i), (j) upper and lower
pendula in anti-phase in pairs: �11 ¼ ��31, �21 ¼ ��41 and �12 ¼ ��32, �22 ¼ ��42; (k)–(p) for n ¼ 5

coupled double pendula: (k), (l) upper and lower pendula in phase: �11 ¼ �21 ¼ �31 ¼ �41 ¼ �51 and

�12 ¼ �22 ¼ �32 ¼ �42 ¼ �52, (m), (n) upper and lower pendula synchronized in phase in two anti-phase

clusters, (o), (p) upper and lower pendula shifted by 2�
5 : �11 ¼ 0 ^ �21 ¼ 2�

5 ^ �31 ¼ 4�
5 ^ �41 ¼ 6�

5 ^ �51 ¼
8�
5 and �12 ¼ 0 ^ �22 ¼ 2�

5 ^ �32 ¼ 4�
5 ^ �42 ¼ 6�

5 ^ �52 ¼ 8�
5 .
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For n ¼ 5, system (3.2) has the following solution:

cos �11ðsin �21 þ sin �31 þ sin �41 þ sin �51Þ
� sin �11ðcos �21 þ cos �31 þ cos �41 þ cos �51Þ ¼ 0;

cos �21ðsin �11 þ sin �31 þ sin �41 þ sin �51Þ
þ sin �21ðcos �11 þ cos �31 þ cos �41 þ cos �51Þ ¼ 0;

cos �31ðsin �11 þ sin �21 þ sin �41 þ sin �51Þ
� sin �31ðcos �11 þ cos �21 þ cos �41 þ cos �51Þ ¼ 0;

cos �41ðsin �11 þ sin �21 þ sin �31 þ sin �51Þ
� sin �41ðcos �11 þ cos �21 þ cos �31 þ cos �51Þ ¼ 0;

cos �51ðsin �11 þ sin �21 þ sin �31 þ sin �41Þ
� sin �51ðcos �11 þ cos �21 þ cos �31 þ cos �41Þ ¼ 0:

Hence, the synchronization condition takes the form: �11 ¼ 0 ^ sin �21þ
sin �31 þ sin �41 þ sin �51 ¼ 0. That implies the °owing solutions: �21 ¼ 0 ^ �31 ¼
0 ^ �41 ¼ 0 ^ �51 ¼ 0 or �11 ¼ 0 ^ �21 ¼ 2

5 � ^ �31 ¼ 4
5 � ^ �41 ¼ 6

5 � ^ �51 ¼ 8
5 � or

combinations when two double pendula are in anti-phase synchronization and three

are shifted by 2�=3 (see phase shifted state of three coupled double pendula). All

described con¯guration are presented in Figs. 2(k)–2(p).

3.2. Synchronization condition for n number of coupled pendula

According to detailed analysis of synchronization in system of n ¼ 2; 3; 4; 5 coupled

double pendula we can generalize obtained results for an arbitrary number n of

systems. Despite the value of n we can observe the state where all double pendula are

synchronized in phase which means that all upper and similarly all lower pendula are

completely synchronized. They act on the beam causing its oscillations. Considering

other possible con¯gurations we have to recall our assumptions which are used to

derive the analytical condition of synchronization: the beam is at rest and double

pendula perform harmonic motion. As it is shown in Figs. 2(m) and 2(n) double

pendula can group in clusters. The minimum number of double pendula in cluster is

two because for two and more double pendula in cluster, forces acting on beam

vanish. As clusters are not acting on one another via the beam, the phase shift

between clusters can be an arbitrary number from 0 to 2�. The number of double

pendula in each cluster is a prime number because any other number can be

expressed as a sum of prime numbers.34 The phase shift between double pendula in

cluster is 2�=n1, where n1 is a number of double pendula in the cluster (n1 is a prime

number). For example, for n ¼ 11, we can observe the following numbers of double

pendula in clusters: ð3; 2; 2; 2; 2Þ or ð3; 3; 3; 2Þ or ð5; 3; 3Þ or ð5; 2; 2; 2Þ or ð7; 2; 2Þ or
ð11Þ. Note that ð9; 2Þ is not a possible solution — the cluster of nine double pendula

Dynamics of n Coupled Double Pendula Suspended to the Moving Beam
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can be created from three clusters with three pendula shifted by 2�=3. The formula

which let us calculate the number of possible con¯gurations is complex,34 hence it is

better to base on an algorithm (see Appendix B) which gives us explicit results

(number of clusters and number of double pendula in each cluster). As soon as we do

not consider a large n, the time of calculation is short. The number of possible

clusters grows much faster than the number n of double pendula (the tendency is

close to exponential), e.g. for n ¼ 10 (5 clusters), n ¼ 30 (98 clusters), n ¼ 60 (2198

clusters), n ¼ 90 (38,257 clusters), n ¼ 120 (145,627 clusters). Additionally, when

number of double pendula is a prime number we have a case where double pendula

are equally distributed with phase shift 2�=n, so for our example with n ¼ 11 double

pendula we observe a seventh possible con¯guration. When number of double pen-

dula is not a prime number such con¯guration can only be created from other clusters

with properly chosen phase shifts between clusters, e.g. for eight double pendula,

con¯guration consists of four clusters each with two pendula ð2; 2; 2; 2Þ with exactly

�=4 phase shift between clusters give equally distributed eight double pendula.

Moreover, for all mentioned above types of synchronization in each double pendulum

the upper and lower pendulum can be synchronized in phase or anti-phase, hence

the number of possible synchronous states is two times bigger than the number of

possible clusters.

4. Numerical Results

In this section, we show the shapes of possible periodic solutions and analyze their

stability. Numerical calculations are performed using the Auto 07p32 continuation

toolbox. Auto07p lets us obtain periodic solutions of the system independently on

their stability. To start continuation we need to have periodic solutions, hence each

periodic solution is ¯rstly calculated by numerical integration using the fourth-order

Runge–Kutta method and then corrected by applying Newton–Raphson scheme in

Auto07p. In our numerical studies, we use the following parameters of Eqs. (2.2)–

(2.4): mi1 ¼ mi2 ¼ 1:0 kg, M ¼ 10:0 kg, li1 ¼ li2 ¼ 0:2485m, kx ¼ 4:0N/m, cx ¼
1:53Ns/m, cvdp ¼ �0:1Ns/m, � ¼ 60:0m�2, ci2 ¼ 0:0016Ns/m, which yield the

following dimensionless coe±cients: for n ¼ 3:Ai1 ¼ 0:031063, Ai2 ¼ 0:015531, �i1 ¼
0:125000, �i2 ¼ 0:062500, Li1 ¼ 0:031063, Li2 ¼ 0:015531, Li3 ¼ 0:015531, Gi1 ¼
0:031063, Gi2 ¼ 0:015531, Cvdp ¼ �0:004003, Ci2 ¼ 0:000063, C ¼ 0:015219,

K ¼ 0:00633; for n ¼ 4: Ai1 ¼ 0:027311, Ai2 ¼ 0:013806, �i1 ¼ 0:111111, �i2 ¼
0:055556, Li1 ¼ 0:027611, Li2 ¼ 0:013806, Li3 ¼ 0:013806, Gi1 ¼ 0:027611, Gi2 ¼
0:013806, Cvdp ¼ �0:003558, Ci2 ¼ 0:000056, C ¼ 0:013528, K ¼ 0:005629; and for

n ¼ 5: Ai1 ¼ 0:024850, Ai2 ¼ 0:012425, �i1 ¼ 0:100000, �i2 ¼ 0:05000, Li1 ¼
0:024850, Li2 ¼ 0:012425, Li3 ¼ 0:012425, Gi1 ¼ 0:024850, Gi2 ¼ 0:012425,

Cvdp ¼ �0:003202,Ci2 ¼ 0:000050,C ¼ 0:012176,K ¼ 0:005066 (i ¼ 1; . . . ;n). Our

bifurcation parameter is the mass M of the beam. To hold an intuitive physical

interpretation, we change dimensional mass, but all the calculations are performed

for dimensionless equations.
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4.1. Shape of periodic solutions

The shapes of periodic solutions of two self-excited double-pendula and detailed

analysis of their stability are presented in our previous paper,28 hence we do not

present the results here. Shapes of periodic solutions for four coupled double pendula

are nearly the same as for two coupled double pendula (periods are slightly di®erent

because of di®erent ratio between mass of the beam and masses of the pendula).

In Fig. 3, we show shapes of four di®erent periodic solutions for three coupled

double pendula. In Fig. 3(a), one can observe a case where all pendula are syn-

chronized in-phase, while beam is moving in anti-phase to them. Hence, the time

traces of two lower and two upper pendula overlap. In Fig. 3(b), the upper and lower
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Fig. 3. Pendula and beam displacements for one period of motion (N ¼ 1) for four di®erent periodic

solutions assuming identical masses of the n ¼ 3 coupled double pendula: mi1 ¼ mi2 ¼ 1:0 kg

(i ¼ 1; . . . ;n). The displacement yb of the beam is shown 10 or 100 times magni¯ed. (a) pendula con¯g-
uration from Fig. 2(c) with the period T ¼ 6:89, (b) pendula con¯guration from Fig. 2(d) with the period

T ¼ 3:53, (c) pendula con¯guration from Fig. 2(e) with the period T ¼ 8:28, and (d) pendula con¯guration

from Fig. 2(f ) with the period T ¼ 3:77.
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pendula are in anti-phase and the beam is moving is in phase with lower pendula.

The next synchronous state is observed when pendula are shifted by 2�=3, where we

also observe two cases presented in Fig. 3(c) (upper and lower pendula are in-phase)

and in Fig. 3(d) (upper and lower pendula are in anti-phase). One can see that the

period of the beam is three times shorter than the period of the pendula, hence the

beam performs three full periods of motion every one period of the whole system. It is

worth to notice, that contrary to even number of double pendula case, for odd

number of double pendula the beam is always oscillating. For equally phase shifted

double pendula (by 2�=3), the amplitude of the beam is approximately 10 times

smaller than for in phase synchronization. The oscillation of the beam for phase

shifted cases is observed because periodic solutions of each pendulum is not
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Fig. 4. Pendula and beam displacements for one period of motion (N ¼ 1) for four di®erent periodic

solutions assuming identical masses of the n ¼ 4 coupled double pendula: mi1 ¼ mi2 ¼ 1:0 kg

(i ¼ 1; . . . ;n). The displacement yb of the beam M is shown 10 or 100 times magni¯ed. (a) pendula
con¯guration from Fig. 2(g) with the period T ¼ 6:65, (b) pendula con¯guration from Fig. 2(h) with the

period T ¼ 3:48, (c) pendula con¯guration from Fig. 2(i) with the period T ¼ 3:75, and (d) pendula

con¯guration from Fig. 2(j) with the period T ¼ 8:22.
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harmonic, hence the reacting forces acting on the beam do not vanish. This property

is visible in Fig. 3(d) where solutions are closer to harmonic ones than in Fig. 3(c),

resulting in twice smaller amplitude of the beam.

The shapes of synchronous periodic solutions for n ¼ 4 coupled double pendula

are presented in Fig. 4. As we mention before they are nearly the same as for two

coupled double pendula (see Ref. 28). In Figs. 4(a) and 4(b) we show in-phase mo-

tion of double pendula — in Fig. 4(a) the pendula in each double pendulum are

in-phase while in Fig. 4(b) they are in anti-phase. As always, for this type of syn-

chronous motion the beam is oscillating. In Figs. 4(c) and 4(d) double pendula are

grouped in two pairs (in each pair there are two anti-phase synchronized double
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Fig. 5. Pendula and beam displacements for one period of motion (N ¼ 1) for four di®erent periodic

solutions assuming identical masses of the n ¼ 5 coupled double pendula: mi1 ¼ mi2 ¼ 1:0 kg

(i ¼ 1; . . . ;n). The displacement yb of the beam M is in (b)–(d) magni¯ed. (a) pendula con¯guration from

Fig. 2(k) with the period T ¼ 6:44, (b) pendula con¯guration from Fig. 2(l) with the period T ¼ 3:42, (c)
pendula con¯guration from Fig. 2(m) with the period T ¼ 3:77, (d) pendula con¯guration from Fig. 2(n)

with the period T ¼ 8:25, (e) pendula con¯guration from Fig. 2(o) with the period T ¼ 8:25 and (f )

pendula con¯guration from Fig. 2(p) with the period T ¼ 3:83.
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pendula). Generally, there is no assumption on phase shift between pairs — it can be

an arbitrary phase angle form 0 to 2�, because the reacting forces that act on the

beam annul themselves in each pair. This implies that for even number of double

pendula (n � 4) we observe in¯nite number of possible synchronous con¯gurations.

For n ¼ 5, we obtain six possible synchronous states which are shown in Fig. 5. In

Figs. 5(a) and 5(b) we show the in-phase synchronization of double pendula — in

Fig. 5(a) the pendula in each double pendulum are in phase while in Fig. 5(b) they

are in anti-phase. One can see that when the mass M of the beam is constant the

increase of the number of double pendula results in the growth of the beam and

pendula amplitudes. By changing the mass M of the beam, one can obtain the same

amplitude of system's motion for any number of coupled pendula.

In Fig. 5(c), we show the solution where pendula are equally distributed in phase

space (shifted by 2�=5) and in each double pendulum we observe in-phase syn-

chronization between upper and lower pendula. The second con¯guration of equally

phase distributed pendula is presented in Fig. 5(d) where in each double pendulum

we observe anti-phase synchronization between upper and lower pendulum. Com-

paring both ¯gures with Figs. 3(c) and 3(d) we notice that amplitudes of beam

are much smaller. Hence, the increase in the number of coupled double pendula

reduce the beam amplitude. Therefore, we assume that when n is odd number and

n ! 1 the amplitude of beam tends to zero (max yb ! 0). In Fig. 5(e), we show

synchronization in two clusters, i.e. two double pendula are in anti-phase synchro-

nization and three are equally distributed in phase space (phase shift 2�=3). The

same type of solution is presented in Fig. 5(f) but in each double pendulum pendula

are in anti-phase con¯guration. The anti-phase pair (cluster consists of two pendula)

do not act on the motion of the beam (no resultant force). The motion of the beam is

governed by the dynamics of three double pendula cluster, hence the beam is per-

forming three periods of motion for one period of system (similarly as for three

coupled systems).
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Fig. 5. (Continued)
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4.2. Stability of periodic solutions

In this section, we show how the change in the natural frequency of the beam a®ects

the stability of obtained periodic solutions. We present one-parameter bifurcation

diagrams calculated using AUTO-07p. We choose the beam mass M as the bifur-

cation parameter and vary it in the range from 0.01 kg to 80.0 kg (in some plots we

reduce the range to 20.0 kg or 50.0 kg because for larger masses of the beam the

stability does not change). In all plots on the vertical axis we show the maximum

amplitude of the beam max yb. The black dots in ¯gures mark the starting point of

calculation — from this point we follow the solution in both directions — in-

creasing and decreasing the mass M of the beam (we start form periodic solutions

presented in previous subsection). The changes in line types of branches of periodic

solutions correspond to changes of stability, i.e. the black solid line of branches

mean that periodic solutions are stable and black dashed that the solution is

unstable.

In Fig. 6, we show bifurcation diagrams for three coupled double pendula.

We observe changes in stability properties of all considered periodic solutions.

Figure 6(a) shows periodic solutions where all pendula are in-phase (see Fig. 3(a)).

One can see that with the decrease of beam's mass, solutions along the branch are

stable up to Neimark-Sacker bifurcation (for M ¼ 4:3 kg) when they become un-

stable. With increasing mass M, we do not notice any change in stability. The

similar scenario occurs for periodic solution presented in Fig. 3(b) — the destabi-

lization takes place for M ¼ 2:71 kg. Subsequent subplots — Figs. 6(c) and 6(d)

present continuation of the solutions from Figs. 3(c) and 3(d) where double pendula

are shifted by 2�=3. For periodic solution shown in 6(c) the starting orbit is un-

stable, we observe the stabilization in Neimark–Sacker bifurcation for M ¼ 1:54 kg.

For the second branch (Fig. 6(d)) we start from the stable solution and it remains

stable up toM ¼ 61:48 kg. In both branches the increase of beam's massM causes the

decrease of its amplitude ðmax yb). As one can notice the varying natural frequency of

the beam changes the stability of solutions and there is no value ofM for which all of

them are stable. The maximum number of stable coexisting solutions is three and

minimum is one, hence parameter M is crucial to obtain given periodic solution.

Figure 7 is devoted to stability analysis of periodic solutions obtained for four

coupled double pendula. We present only branches of periodic solutions for which we

observe changes in stability. We do not show continuation of orbits presented in

Figs. 4(b) and 4(d) because they are stable in the whole considered range of the mass

M of the beam. In Fig. 7(a), we start from solution presented in Fig. 4(a). Similarly

to previous in phase solutions this branch is stable when mass M of the beam

increases, but with decreasing mass M it becomes unstable in the Neimark–Sacker

bifurcation for M ¼ 4:77 kg. The starting point of the branch presented in Fig. 4(b)

corresponds to periodic solution shown in Fig. 4(c).

At the beginning, the branch is unstable (around black dot), then for M ¼ 3:8 kg

in the symmetry breaking pitchfork bifurcation we observe an appearance of three

Dynamics of n Coupled Double Pendula Suspended to the Moving Beam
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stable branches — one symmetric (the beam stays unmovable) and two asymmetric

periodic solutions (the lines presenting amplitudes of beam overlap for them, so we

just see one curve). The asymmetric branches lose stability simultaneously in Nei-

mark–Sacker bifurcations for M ¼ 4:1 kg. The further increase of mass M along

branches corresponding to asymmetric solutions cause decrease of beam's amplitude.

Shapes of asymmetric orbits are similar to those for single pendula — both solutions

are shifted — one in clockwise and the other in counter clockwise direction from

hanging down position of pendulum.
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0.01

0.00
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NS
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max yb

(a)
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0.008

0.010

0.000
NS

M[kg]
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(d)

Fig. 6. One-parameter path-following of periodic solutions for the varying mass M of the beam for n ¼ 3

coupled double pendula: (a) in-phase motion from Fig. 3(a), (b) anti-phase motion from Fig. 3(b), (c) the

equally spaced motion with phase shift 2�=3 between double pendula with in phase motion from Figs. 3(c)
and 3(d) the equally spaced motion with phase shift 2�=3 between double pendula with anti-phase motion

in each double pendulum from Fig. 3(d). The black solid and black dashed lines correspond to stable and

unstable periodic solutions, respectively. The abbreviation NS stands for the Neimark–Sacker bifurcation
and PT denotes the pitchfork bifurcation. Bifurcations along unstable branches are neglected. The starting

points of continuation are marked by black dots.
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The solutions obtained for ¯ve coupled double pendula are mostly unstable.

Branches which starts from orbits presented in Figs. 5(c)–5(e) are unstable in the

whole considered range of parameter M . Contrary, the solution shown in Fig. 5(b)

remains stable. Because of that we do not present their bifurcation diagrams. First

form remaining solutions is a periodic orbit shown in Fig. 5(a)), its bifurcation

M [kg]
100 20 40 50

max yb NS

30

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

(a)

M [kg]
100 20 40 50

max yb

30

0.006

0.004

0.002

0.000

0.008

0.010

NS

PT

(b)

Fig. 7. One-parameter path-following of periodic solutions for the varying mass M of the beam for
n ¼ 4 coupled double pendula: (a) in-phase motion from Fig. 4(a), (b) motion of double pendulum from

Fig. 4(c). The black solid and black dashed lines correspond to stable and unstable periodic solutions,

respectively. The abbreviation NS stands for the Neimark–Sacker bifurcation and PT denotes the pitch-

fork bifurcation. Bifurcations along unstable branches are neglected. The starting points of continuation
are marked by black dots.

M [kg]
100 20 40 50

max yb NS

30

0.07
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0.00

(a)
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max yb

15

0.008
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0.006
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0.004

0.002

0.000

PT
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Fig. 8. One-parameter path-following of periodic solutions for the varying mass M of the beam for n ¼ 5

coupled double pendula: (a) in-phase motion from Fig. 5(a), (b) the equally spaced motion with phase shift

2�=5 between double pendula with in phase motion from Fig. 5(f). The black solid and black dashed lines
correspond to stable and unstable periodic solutions, respectively. The abbreviation NS stands for the

Neimark–Sacker bifurcation and PT denotes the pitchfork bifurcation. Bifurcations along unstable

branches are neglected. The starting points of continuation are marked by black dots.
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digram is presented in Fig. 8(a). Starting from stable solution (black dot) it becomes

unstable with decreasing mass of the beam in Neimark–Sacker bifurcation for

M ¼ 4:97 kg. Increase of beam's mass causes only slow decrease of its amplitude.

Interesting behavior can be observed for synchronization in two clusters with anti-

phase synchronization in each double pendulum (see Fig. 5(f)). We start continua-

tion from unstable solution, which in symmetry breaking pitchfork bifurcation for

M ¼ 9:37 kg divides into three branches — the symmetric branch stays unstable and

two asymmetric branches become stable (curves overlap as for four double pendula).

Both asymmetric branches merge with symmetric one for M ¼ 3:21 kg in the inverse

pitchfork bifurcation.

5. Conclusion

In this paper, we show di®erent synchronous solutions which exist in the system of n

coupled double pendula suspended on the beam. We derive the analytical condition

which enable calculation of the possible periodic solutions for any number of double

pendula. For each periodic solution obtained from derived condition, we observe two

states of synchronization between pendula in each double pendulum (upper and

lower pendula are in phase or anti-phase). The number of possible con¯gurations

grows with the number of coupled pendula. We show shapes of periodic solutions for

n ¼ 3; 4; 5 coupled double pendula, which can be stable or unstable depending on

system's parameters. We examine how stability of each considered periodic solution

changes with varying natural frequency of the beam. Using path-following toolbox

Auto07p we detect all types of bifurcations along the branches of analyzed periodic

solutions. In the considered system, the typical bifurcation that stabilizes/destabi-

lizes periodic solutions is a Neimark–Sacker bifurcation. Hence, we observe appear-

ance or disappearance of quasiperiodic oscillations. Moreover, by the proper choice of

beam's mass parameter one can ensure that only selected solutions are stable. We

claim that obtained results give a good overview of the dynamics of systems with

coupled double pendula, and show that stability of such systems is strongly depen-

dent on natural frequency of the beam. Therefore, to obtain desired synchronous

state one has to adjust beam's natural frequency.
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Appendix A

In this appendix, we derive an analytical condition for the double pendula

synchronization in the considered system. We base on energy balance method and

assumption of small oscillation of the pendula.
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A.1. Equation of the beam motion

Assuming that the double pendula are identical and perform periodic oscillations

with the frequency !0 and low amplitudes, one can describe displacements, velocities

and accelerations of the upper and lower pendula in the following way:

 ij ¼ �ij sinð!� þ �ijÞ; ðA:1Þ
 
:
ij ¼ !�ij cosð!� þ �ijÞ; ðA:2Þ

 
::
ij ¼ �!2�ij sinð!� þ �ijÞ ðA:3Þ

for i ¼ 1; . . . ;n and j ¼ 1; 2, where �ij are amplitudes and �ij are phase di®erence

between pendula.

Equation (2.2) allows to estimate the force generated by the pendula that acts on

the beam:

F ¼ �
Xn
i¼1

Ai1ð 
::
i1 cos i1 �  

: 2
i1 sin i1Þ �

Xn
i¼1

Ai2ð 
::
i2 cos i2 �  

: 2
i2 sin i2Þ: ðA:4Þ

Substituting Eqs. (A.1)–(A.3) into Eq. (A.4) and considering the relation

cos2� sin� ¼ 0:25 sin�þ 0:25 sin 3�, one gets:

F ¼
Xn
i¼1

X2
j¼1

Aij½!2�ijð1þ 0:25�2
ijÞ sinð!� þ �ijÞ

þ !2�3
ij0:25 sinð3!� þ 3�ijÞ�: ðA:5Þ

Substituting Eq. (A.5) in the equation of the beam's motion (2.2) we have:

€y b þKyb þC _y b ¼
Xn
i¼1

X2
j¼1

Aij½!2�ijð1þ 0:25�2
ijÞ sinð!� þ �ijÞ

þ !2�3
ij0:25 sinð3!� þ 3�ijÞ�: ðA:6Þ

Assuming that damping coe±cient C is small, one gets:

yb ¼
Xn
i¼1

X2
j¼1

X1ijAij sinð!� þ �ijÞ þ
X2
i¼1

X2
j¼1

X3ijAij sinð3!� þ 3�ijÞ;

€y b ¼
Xn
i¼1

X2
j¼1

A1ijAij sinð!� þ �ijÞ þ
X2
i¼1

X2
j¼1

9A3ijAij sinð3!� þ 3�ijÞ;
ðA:7Þ

where

X1ij ¼ !2�ijð1þ 0:25�2
ijÞ

K� !2
X3ij ¼

0:25!2�3
ij

K� 9!2
;

A1ij ¼ �!4�ijð1þ 0:25�2
ijÞ

K� !2
A3ij ¼

�0:25!4� 3
ij

K� 9!2
:

ðA:8Þ
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Equation (A.7) represent the displacement and the acceleration of the beam with

mass M respectively.

A.2. Energy balance of the system

Multiplying Eq. (2.2) by the velocity of the beam _y b, we obtain:

€y b _y b þKyb _y b ¼ �C _y 2
b �

Xn
i¼1

Ai1ð 
::
i1 _y b cos i1 �  

: 2
i1 _y b sin i1Þ

�
Xn
i¼1

Ai2ð 
::
i2 _y b cos i2 �  

: 2
i2 _y b sin i2Þ: ðA:9Þ

Assuming that the motion of the pendulum is periodic with period T (T ¼ 2�=!) and

integrating Eq. (A.9), we obtain the following energy balance:Z T

0

€y b _y bd� þ
Z T

0

Kyb _y bd�

¼ �
Z T

0

C _y 2
bd� �

Z T

0

X2
j¼1

X2
i¼1

Aijð 
::
ij cos ij �  

: 2
ij sin ijÞ

 !
_y bd�: ðA:10Þ

The left-hand side of Eq. (A.10) represents the increase in the total energy of the

beam which for the periodic oscillations is equal to zero:

Z T

0

€y b _y bd� þ
Z T

0

Kyb _y bd� ¼ 0: ðA:11Þ

The ¯rst component of the right-hand side of the Eq. (A.10) represents the energy

dissipated by linear damper C

W DAMP
beam ¼

Z T

0

C _y 2
bd� ðA:12Þ

while the second component represents the work performed by horizontal compo-

nents of the force generated by the double pendula that acts on the beam and causing

its motion:

W DRIVE
beam ¼ �

Z T

0

X2
j¼1

Xn
i¼1

Aijð 
::
ij cos ij �  

: 2
ij sin ijÞ

 !
_y bd�: ðA:13Þ

Substituting Eqs. (A.12) and (A.13) to Eq. (A.10) we get:

W DRIVE
beam �W DAMP

beam ¼ 0: ðA:14Þ
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Multiplying the equation of the upper pendulum Eq. (A.2) by velocity  
:
i1, we

obtain:

�i1 €y b 
:
i1 cos i1 þ Li1 

::
i1 
:
i1 þ Li3 

::
i2 
:
i1 cosð i1 �  i2Þ

¼ �Li3 
:
i1 
: 2
i2 sinð i1 �  i2Þ �Gi1 

:
i1 sinð i1Þ

�Cvdpð1� � 2
i1Þ 

: 2
i1 þCi2ð 

:
i2 �  

:
i1Þ 

:
i1: ðA:15Þ

Assuming that the oscillations of the pendula are periodic with period T and

integrating Eq. (A.15), one obtains the following energy balance:Z T

0

Li1 
::
i1 
:
i1d� þ

Z T

0

Gi1 
:
i1 sin i1d�

¼ �
Z T

0

�i1 €y b 
:
i1 cos i1d� �

Z T

0

Li3ð 
:
i1 
: 2
i2 sinð i1 �  i2Þ

þ  
::
i2 
:
i1 cosð i1 �  i2ÞÞd� �

Z T

0

Cvdp 
: 2
i1d� þ

Z T

0

Cvdp� 
2
i1 
: 2
i1d�

þ
Z T

0

Ci2 
:
i2 
:
i1d� �

Z T

0

Ci2 
: 2
i1d�: ðA:16Þ

The left-hand side of Eq. (A.16) represents the total energy of the upper pendula

which in the case of periodic oscillations is equal to zero:Z T

0

Li1 
::
i1 
:
i1d� þ

Z T

0

Gi1 
:
i1 sin i1d� ¼ 0 i ¼ 1; 2: ðA:17Þ

The ¯rst component of the right-hand side of Eq. (A.16) represents the energy which

is transferred to the beam:

W SYN
i1 ¼

Z T

0

�i1 €y b 
:
i1 cos i1d�: ðA:18Þ

The second component describes the energy which is transferred to lower pendulum:

W SYNP
i1 ¼ �

Z T

0

Li3ð 
:
i1 
: 2
i2 sinð i1 �  i2Þ þ  

::
i2 
:
i1 cosð i1 �  i2ÞÞd� ðA:19Þ

and the third component describes the energy, which is supplied to the system by van

der Pol damper in one period of oscillations:

W DAMP
i1 ¼ �

Z T

0

ðCvdp þCi2Þ 
: 2
i1 �Ci2 

:
i2 
:
i1d�: ðA:20Þ

Finally, the last component represents the energy dissipated by van der Pol damper:

W SELF
i1 ¼ �

Z T

0

�Cvdp 
2
i1 
: 2
i1d� ðA:21Þ
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substituting Eqs. (A.18)–(A.21) to Eq. (A.16), we obtain the following relation:

W SYNP
i1 �W SYN

i1 þW SELF
i1 þW DAMP

i1 ¼ 0 for i ¼ 1; . . . ;n:

Multiplying the equation of the lower pendulum Eq. (2.4) by velocity  
:
i2, one gets:

�i2 €y b 
:
i2 cos i2 þ Li3 

::
i1 
:
i2 cosð i1 �  i2Þ þ Li2 

:
i2 
::
i2

¼ Li3 
: 2
i1 
:
i2 sinð i1 �  i2Þ �Gi2 

:
i2 sinð i2Þ �Ci2ð 

:
i2 �  

:
i1Þ 

:
i2: ðA:22Þ

Assuming that the oscillations of the pendulum are periodic with period T , the

integration of Eq. (A.22) gives the following energy balance:Z T

0

Li2 
:
i2 
::
i2d� þ

Z T

0

Gi2 
:
i2 sinð i2Þd�

¼ �
Z T

0

�i2 €y b 
:
i2 cos i2d� þ

Z T

0

Li3ð 
: 2
i1 
:
i2 sinð i1 �  i2Þ

�  
::
i1 
:
i2 cosð i1 �  i2ÞÞd� þ

Z T

0

Ci2 
: 2
i2d� þ

Z T

0

Ci2 
:
i1 
:
i2d�: ðA:23Þ

The left-hand side of Eq. (A.23) represents the total energy of the lower pendu-

lum which in case of periodic oscillations is equal to zeroZ T

0

Li2 
:
i2 
::
i2d� þ

Z T

0

Gi2 
:
i2 sinð i2Þd� ¼ 0 i ¼ 1; 2: ðA:24Þ

The ¯rst component of the right-hand side of Eq. (A.23) represents the energy which

is transferred to the beam via the upper pendulum or to the next pendulum via the

upper pendulum and the beam:

W SYN
i2 ¼

Z T

0

�i2 €y b 
:
i2 cos i2d� ðA:25Þ

The second component describes the energy which is transferred to the upper

pendulum:

W SYNP
i2 ¼ �

Z T

0

Li3ð 
: 2
i1 
:
i2 sinð i1 �  i2Þ �  

::
i1 
:
i2 cosð i1 �  i2ÞÞd� ðA:26Þ

and the last component represents the energy dissipated by the damper:

W DAMP
i2 ¼ �

Z T

0

Ci2ð 
:
i2 �  

:
i1Þ 

:
i2d�: ðA:27Þ

Substituting Eqs. (A.25)–(A.27) to Eq. (A.23), one obtains the following relation:

W SYNP
i2 �W SYN

i2 þW DAMP
i2 ¼ 0;

where i ¼ 1; . . . ;n.
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A.3. Synchronization between the upper and lower pendula

The energy transferred from the upper to the lower pendulum is given by:

W SYNP
i1 ¼ �

Z T

0

Li3ð 
::
i2 cosð i1 �  i2Þ þ  

: 2
i2 sinð i1 �  i2ÞÞ 

:
i1d� ðA:28Þ

and the energy transferred from the lower to the upper pendulum as:

W SYNP
i2 ¼ �

Z T

0

Li3ð 
::
i1 cosð i1 �  i2Þ �  

: 2
i1 sinð i1 �  i2ÞÞ 

:
i2d� ðA:29Þ

Taking into account Eqs. (A.1)–(A.3) and Eq. (A.29) takes the form:

W SYNP
i1 ¼ �Li3

Z T

0

ð�!2�i2 sinð!� þ �i2Þ cosð�i1 sinð!� þ �i1Þ

� �i2 sinð!� þ �i2ÞÞ þ !2�2
i2cos

2ð!� þ �i2Þ sinð�i1 sinð!� þ �i1Þ
� �i2 sinð!� þ �i2ÞÞÞ!�i1 cosð!� þ �i1Þd�

¼ Li3�!
2�i1�i2 sinð�i2 � �i1Þ ðA:30Þ

and

W SYNP
i2 ¼ Li3�!

2�i1�i2 sinð�i1 � �i2Þ ¼ �W SYNP
i1 : ðA:31Þ

The synchronization between the lower and upper pendula occurs when:

W SYNP
i1 ¼ 0 ) sinð�i1 � �i2Þ ¼ 0: ðA:32Þ

The condition (A.32) is ful¯lled when:

�i1 ¼ �i2 _ ð�i1 ¼ 0 ^ �i2 ¼ �Þ: ðA:33Þ
In the ¯rst case, the oscillations of the upper and lower pendula are in-phase, i.e. the

pendula move in the same directions, whereas in the second case they are in anti-

phase, i.e. the pendula move in the opposite directions. For low oscillations, limit

conditions (A.33) de¯ne two normal modes of oscillations.1

A.4. Synchronization between the upper pendula

In each equation of the pendulum's motion, there is a component in°uencing the

beam's motion

M SYN
ij ¼ �ij €y b cos ij; ðA:34Þ

which is called the synchronization momentum (torque). The work done by this

momentum during one period is equal to zero.

W SYN
ij ¼

Z T

0

�ij €y b cos ij 
:
ijdt ¼ 0 ðA:35Þ

Dynamics of n Coupled Double Pendula Suspended to the Moving Beam
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substituting Eqs. (A.7), (A.1) and (A.2) into (A.35) and performing the lineariza-

tion, we arrive at:

W SYN
kl ¼ ��kl�kl

Xn
i¼1

X2
j¼1

�ijMij sinð�ij � �klÞ
" #

¼ 0 k ¼ 1; . . . ;n l ¼ 1; 2; ðA:36Þ

where

� ¼ �!5
0�

MlbðK� !2
0Þ
; Mi1 ¼ ðmi1 þmi2Þli1;

Mi2 ¼ mi2 li2; �ij ¼ �ijð1þ 0:25�2
ijÞ

ðA:37Þ

and n is number of double pendula.

Equation (A.36) allow the calculation of phase angle �ij for which the synchro-

nization of the periodic pendula oscillations occurs. We assume that pendula are

identical, hence we can introduce the following substitution:

A ¼ �i1Mi1; B ¼ �i2Mi2 for i ¼ 1; . . . ;n: ðA:38Þ

The synchronization between lower and upper pendula can either be in phase

ð�i1 ¼ �i2Þ or in anti-phase ð�i1 � �i2 ¼ �Þ. In both cases the condition sinð�i1 �
�i2Þ ¼ 0 is ful¯lled. That allows to rewrite Eq. (A.36) in simpler form:

ðAþ BÞ½sinð�21 � �11Þ þ sinð�31 � �11Þ þ � � � þ sinð�i1 � �11Þ� ¼ 0

ðAþ BÞ½sinð�11 � �21Þ þ sinð�31 � �21Þ þ � � � þ sinð�i1 � �21Þ ¼ 0

..

. ..
.

ðAþ BÞ½sinð�11 � �i1Þ þ sinð�21 � �i1Þ þ � � � þ sinð�i�11 � �i1Þ� ¼ 0

ðA:39Þ

for i ¼ 1; . . . ;n.

Equation (A.39) can be divided by ðAþBÞ which gives us the condition for

synchronization between the upper pendula.

Appendix B

Code33 in Mathematica which let us calculate number of possible clusters and

number of pendula in each cluster:

f[n ] :¼Length@IntegerPartitions[n, All, Prime@Range@PrimePi@n];

w[n ] :¼ Select[IntegerPartitions[n], And @@ PrimeQ/@ # &];

number¼ 21;

f[number]

w[number]
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a b s t r a c t

We consider the synchronization of two self-excited double pendula hanging from a hori-
zontal beam which can roll on the parallel surface. We show that such pendula can obtain
four different robust synchronous configurations. Our approximate analytical analysis
allows to derive the synchronization conditions and explains the observed types of synchro-
nizations. We consider the energy balance in the system and show how the energy is trans-
ferred between the pendula via the oscillating beam allowing the pendula’ synchronization.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Groups of oscillators are observed to synchronize in a diverse variety of systems [1,3,15,18,24–26], despite the inevitable
differences between the oscillators. Synchronization is commonly the process where two or more systems interact with each
other and come to oscillate together. The history of synchronization goes back to the 17th century when Ch. Huygens ob-
served weak synchronization of two pendulum clocks [9]. Recently the phenomenon of the synchronization of the clocks
hanging on a common movable beam has been the subject of research by a number of authors [2,4–8,10–14,16,17,19–
21]. These studies have explained the phenomenon of synchronization of a number of single pendula. The problem of the
synchronization of double pendula is less investigated. Fradkov et al. [22] developed the control system which allows the
experimental synchronization of two double pendula. The occurrence of the synchronous rotation of a set of four uncoupled
nonidentical double pendula arranged into a cross structure mounted on a vertically excited platform has been studied in
[23]. It has been shown that after a transient, many different types of synchronous configurations with the constant phase
difference between the pendula can be observed.

In this paper we consider the synchronization of two self-excited double-pendula. The oscillations of each pendulum are
self-excited by the escapement mechanism associated with the lower parts (lower pendula) of each double-pendulum. We
show that two such double-pendula hanging on the same beam can synchronize both in phase and in antiphase. We give
evidence that the observed synchronous states are robust as they exit in the wide range of system parameters and are pre-
served for the parameters’ mismatch (the pendula with different lengths are considered). The performed approximate ana-
lytical analysis allows to derive the synchronization conditions and explains the observed types of synchronizations. The
energy balance in the system allows to show how the energy is transferred between the pendula via the oscillating beam.

This paper is organized as follows. Section 2 describes the considered model of the coupled double pendula. In Section 3
we derive the energy balance of the synchronized identical pendula. Stable synchronous configurations of double pendula
have been identified in Section 4. Section 5 presents the results of our numerical simulations and describes the observed
synchronization states. Finally, we summarize our results in Section 6.

1007-5704/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cnsns.2013.08.008
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2. The model

The analyzed system is shown in Fig. 1. It consists of the rigid beam and two double pendula suspended on it. The
beam of mass M can move in horizontal direction, its movement is described by coordinate X. The beam is connected
to the refuge by a linear spring with stiffness coefficient KX and linear damper with damping coefficient CX . Each double
pendulum consists of two light beams of lengths Lci; Lsi and two masses Mci and Msi, where i = 1,2, mounted at beam’s
ends. Subscripts s and c describe respectively upper and lower parts (pendula) of each double pendulum (see Fig. 1).
The lower parts (pendula) are mounted to the upper parts (pendula) at the distances Lai from the points in which double
pendula are mounted to the beam M. The motion of each double-pendulum is described by angles uci (lower pendulum)
and usi (upper pendulum). The oscillations of the double pendula are damped by the viscous dampers Csi and Cci (not
shown in Fig. 1). The lower pendula of each double pendulum are excited by the clock escapement mechanism (described
in details in [10]) represented by momentum MDi which provide the energy needed to compensate the energy dissipation
due to the viscous friction Csi;Cci and to keep the pendula oscillating [1]. This mechanism acts in two successive steps (the
first step is followed by the second one and the second one by the first one). In the first step if 0 < ðuci �usiÞ < cN then
MDi ¼ MNi and when ðuci �usiÞ <0 or cN < ðuci �usiÞ then MDi ¼ 0, where cN and MNi are constant values which charac-
terize the mechanism. For the second stage one has for �cN < ðuci �usiÞ < 0 MDi ¼ �MNi and MDi ¼ 0 for 0 < ðuci �usiÞ or
�cN > ðuci �usiÞ.

Note that the system shown in Fig. 1 can be considered as the two-dimensional model of Huygens’ experiment (upper
pendula represent clocks’ cases and lower pendula clocks’ pendula) [10].

The equations of motion of the considered system are as follows:

MciL
2
ci

d2uci

dt2 þMciLaiLci
d2usi

dt2 cosðuci �usiÞ þMciLaiLci
dusi

dt

� �2

sinðuci �usiÞ þMciLci
d2X

dt2 cos uci

þ Cuci
duci

dt
� dusi

dt

� �
þMciLcig sinuci ¼ MDi; i ¼ 1;2 ð1Þ

MsiL
2
si

d2usi

dt2 þMciL
2
ai

d2usi

dt2 þMciLaiLci
d2uci

dt2 cosðuci �usiÞ �MciLaiLci
duci

dt

� �2

sinðuci �usiÞ þMsiLsi
d2X

dt2 cos usi

þMciLai
d2X

dt2 cos usi þ Cusi
dusi

dt
� Cuci

duci

dt
� dusi

dt

� �
þMsiLsig sinusi þMciLaig sin usi ¼ �MDi; ð2Þ

MB þ
X2

i¼1

Mci þMsið Þ
 !

d2X

dt2 þ CX
dX
dt
þ KXX ¼

X2

i¼1

MsiLsi þMciLaið Þ � d2usi

dt2 cos usi þ
dusi

dt

� �2

sinusi

 !

þ
X2

i¼1

MciLci �
d2uci

dt2 cos uci þ
duci

dt

� �2

sinuci

 !
; ð3Þ

where i = 1,2.
Considering mass Mc1, length Lc1 of the first lower pendulum and gravitational acceleration g as reference parameters one

can rewrite Eqs. (1)–(3) in the dimensionless form:

Fig. 1. The model of two double pendula hanging from a horizontal beam.
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mcil
2
ci €uþcimcilailci €usi cosðuci �usiÞ þmcilailci _u2

si sinðuci �usiÞ þmcilci€x cos uci þ cuci _uci � _usið Þ þmcilci sin uci

¼ NDi; i ¼ 1;2; ð4Þ

msil
2
si €usi þmcil

2
ai €usi þmcilailci €uci cosðuci �usiÞ �mcilailci _u2

ci sinðuci �usiÞ þmsilsi€x cos usi þmcilai€x cos usi

þ cusi _usi � cuci _uci � _usið Þ þmsilsi sin usi þmcilai sin usi ¼ �NDi; i ¼ 1;2; ð5Þ

mB þ
X2

i¼1

ðmci þmsiÞ
 !

€xþ cx _xþ kxx ¼
X2

i¼1

msilsi þmcilaið Þ �€usi cos usi þ _u2
si sinusi

� �

þ
X2

i¼1

mcilci � €uci cos uci þ _u2
ci sinuci

� �
; ð6Þ

where:

mci ¼
Mci

Mc1
; msi ¼

Msi

Mc1
; mB ¼

MB

Mc1
; lci ¼

Lci

L1
; lsi ¼

Lsi

L1
; x ¼ X

Lc1
;

cuci ¼
Cuci

ffiffiffiffiffiffi
Lc1
p

Mc1L2
c1

ffiffiffi
g
p ; cusi ¼

Cusi
ffiffiffiffiffiffi
Lc1
p

Mc1L2
c1

ffiffiffi
g
p ; cx ¼

CX
ffiffiffiffiffiffi
Lc1
p

Mc1
ffiffiffi
g
p ; kx ¼

KXLc1

Mc1g
; NDi ¼

MDi

Mc1Lc1g
;

s ¼ at (dimensionless time), a ¼
ffiffiffiffiffi
g

LC1

q
, symbols€and _ denote respectively d2

ds2 and d
ds.

3. Energy balance

Assume that the motion of both pendula is periodic with period T. Multiplying Eq. (4) by the angular velocity of the lower
pendula and integrating it over the period T we obtain the equation of the energy balance:

Z T

0
mcil

2
ci €uci _ucidsþ

Z T

0
mcilailci €usi _uci cosðuci �usiÞdsþ

Z T

0
mcilailci _u2

si _uci sinðuci �usiÞdsþ
Z T

0
mcilci€x _uci cos ucids

þ
Z T

0
cuci _uci � _usið Þ _ucidsþ

Z T

0
mcilci _uci sin ucids ¼

Z T

0
NDi _ucids; ð7Þ

where i = 1,2. The first three components of Eq. (7) represent the work performed by the forces with which the lower pen-
dula act on the upper pendula:

WINERT
ci ¼

Z T

0
mcil

2
ci €uci _ucidsþ

Z T

0
mcilailci €usi _uci cosðuci �usiÞdsþ

Z T

0
mcilailci _u2

si _uci sinðuci �usiÞds: ð8Þ

The fourth component describes the energy transferred by the lower pendula (via the upper pendula) to the oscillating
beam:

WSYN
ci ¼

Z T

0
mcilci€x _uci cos ucids: ð9Þ

The part of energy dissipated by lower pendula in the joints which connect lower and upper pendula is given by the follow-
ing component:

WDAMP
csi ¼

Z T

0
cuci _uci � _usið Þ _ucids: ð10Þ

The last component on the left hand side of Eq. (7) represents the work performed by the gravitational force during one per-
iod of oscillations which due to the potential character of this force is equal to zero:

WPOT
ci ¼

Z T

0
mcilci _uci sinucids ¼ 0: ð11Þ

Integral on the right hand side of Eq. (7) describes the part of the work performed by the escapement mechanism, i.e., the
part of this work which is connected with the motion of the lower pendula:

WDRIVE
ci ¼

Z T

0
NDi _ucids: ð12Þ

Substituting Eqs. (8)–(12) into Eq. (7) one gets the energy balance of the lower pendula:

WINERT
ci þWSYN

ci þWDAMP
csi ¼WDRIVE

ci : ð13Þ

P. Koluda et al. / Commun Nonlinear Sci Numer Simulat 19 (2014) 977–990 979



Next multiplying Eq. (5) by the angular velocity of the upper pendula and integrating it over the period T we obtain the
equation of the energy balance:Z T

0
msil

2
si €usi _usidsþ

Z T

0
mcil

2
ai €usi _usidsþ

Z T

0
mcilailci €uci _usi cosðuci �usiÞds�

Z T

0
mcilailci _u2

ci _usi sinðuci �usiÞds

þ
Z T

0
msilsi€x _usi cos usidsþ

Z T

0
mcilai€x _usi cos usidsþ

Z T

0
cusi _usi _usids�

Z T

0
cuci _uci � _usið Þ _usids

þ
Z T

0
msilsi _usi sin usidsþ

Z T

0
mcilai _usi sin usids ¼

Z T

0
�NDi _usids: ð14Þ

The first four components on the left hand side of Eq. (14) represent the work performed by the forces with which the upper
pendula act on the lower pendula:

WINERT
si ¼

Z T

0
msil

2
si €usi _usidsþ

Z T

0
mcil

2
ai €usi _usidsþ

Z T

0
mcilailci €uci _usi cosðuci �usiÞds�

Z T

0
mcilailci _u2

ci _usi sinðuci �usiÞds:

ð15Þ

The next two components represent the energy transferred to the oscillating beam by upper pendula:

WSYN
si ¼

Z T

0
msilsi€x _usi cos usidsþ

Z T

0
mcilai€x _usi cos usids: ð16Þ

The energy dissipated in the joints which connect upper pendula to the beam M is given by the following component:

WDAMP
si ¼

Z T

0
cusi _usi _usids: ð17Þ

The next component represents the part of the energy dissipated in the joints which connect lower and upper pendula (the
part connected with the motion of the upper pendula):

WDAMP
sci ¼ �

Z T

0
cuci _uci � _usið Þ _usids: ð18Þ

The last two components on the left hand side of Eq. (14) represent the work performed by the gravitational force during one
period of oscillations which due to the potential character of this force is equal to zero:

WPOT
si ¼

Z T

0
msilsi _usi sin usidsþ

Z T

0
mcilai _usi sin usids ¼ 0: ð19Þ

The integral on the right hand side of Eq. (14) describes the part of the work performed by the escapement mechanism, i.e.,
the part of this work which is connected with the motion of the upper pendula:

WDRIVE
si ¼

Z T

0
�NDi _usids: ð20Þ

Substituting Eqs. (15)–(20) into Eq. (14) one gets the energy balance of the upper pendula:

WINERT
si þWSYN

si þWDAMP
si þWDAMP

sci ¼WDRIVE
si : ð21Þ

Adding Eq. (13) to Eq. (21) we get the equation describing the energy balance of the double pendula:

WINERT
ci þWSYN

ci þWDAMP
csi þWINERT

si þWSYN
si þWDAMP

si þWDAMP
sci ¼WDRIVE

ci þWDRIVE
si : ð22Þ

Taking into consideration that WINERT
ci þWINERT

si ¼ 0 one can rewrite Eq. (22) in the following form:

WSYN
i þWDAMP

ci þWDAMP
si ¼WDRIVE

i ; ð23Þ

where the synchronization energy, i.e., the energy transferred by each double pendulum to the beam is given by:

WSYN
i ¼

Z T

0
mcilci€x _uci cos ucidsþ

Z T

0
ðmcilai þmsilsiÞ€x _usi cos usids; ð24Þ

the energy dissipated in the joint connecting upper and lower pendula by:

WDAMP
csi ¼

Z T

0
cuci _uci � _usið Þ2ds; ð25Þ
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the energy dissipated in the joint connecting double pendula to the beam by:

WDAMP
si ¼

Z T

0
cusi _u2

sids ð26Þ

and the energy given by the escapement mechanizm by:

WDRIVE
i ¼

Z T

0
NDið _uci � _usiÞds: ð27Þ

Multiplying Eq. (6) by the velocity of the beam and integrating it over the period T we obtain the equation of the energy
balance of the beam:Z T

0
mB þ

X2

i¼1

ðmci þmsiÞ
 !

€x _xdsþ
Z T

0
cx _x _xdsþ

Z T

0
kxx _xds

¼
Z T

0

X2

i¼1

msilsi þmcilaið Þ �€usi cos usi þ _u2
si sin usi

� � !
_xdsþ

Z T

0

X2

i¼1

mcilci � €uci cos uci þ _u2
ci sinuci

� � !
_xds: ð28Þ

The first component on the left hand side of Eq. (28) represents the increase of the kinematic energy of the beam M and both
double pendula during period T which should be equal to zero (as the oscillations are periodic):

WINERT
b ¼

Z T

0
mB þ

X2

i¼1

ðmci þmsiÞ
 !

€x _xds ¼ 0: ð29Þ

The next component represents the energy dissipated in the damper cx:

WDAMP
b ¼

Z T

0
cx _x _xds: ð30Þ

The last component on the left hand side described the work performed by the force in the spring kx which due to the po-
tential character of this force is equal to zero:

WPOT
b ¼

Z T

0
kxx _xds ¼ 0: ð31Þ

The right hand side of Eq. (28) gives the resultant force with which both double pendula act on the beam so:

WSYN
b ¼

Z T

0

X2

i¼1

msilsi þmcilaið Þ �€usi cos usi þ _u2
si sin usi

� � !
_xdsþ

Z T

0

X2

i¼1

mcilci �€uci cos uci þ _u2
ci sin uci

� � !
_xds: ð32Þ

Substituting Eqs. (29)–(32) into Eq. (28) one gets the energy balance of the beam in the form:

WDAMP
b ¼WSYN

b : ð33Þ

Adding together Eqs. (23) and (33) we get the energy balance of the whole system in the following form:

WSYN
1 þWDAMP

c1 þWDAMP
s1 þWSYN

2 þWDAMP
c2 þWDAMP

s2 þWDAMP
b ¼WDRIVE

1 þWDRIVE
2 þWSYN

b : ð34Þ

During the steady periodic oscillations the energy supplied by the escapement mechanisms is dissipated by the dampers, i.e.:

WDAMP
c1 þWDAMP

s1 þWDAMP
c2 þWDAMP

s2 þWDAMP
b ¼WDRIVE

1 þWDRIVE
2 ð35Þ

and
WSYN

1 þWSYN
2 ¼WSYN

b ; ð36Þ

i.e., energy transferred to the beam by double pendula is equal to the work performed by the reaction forces in the joints
connecting the pendula to the beam.

4. Synchronous configurations in the system with identical pendula

Let us consider the system with identical double pendula (lc1 ¼ lc2; ls1 ¼ ls2; la1 ¼ la2; mc1 ¼ mc2; ms1 ¼ ms2). Neglecting
the damping and the energy supplied by the escapement mechanism (see Eq. 25) one can rewrite Eq. (23) in the following
form:

WSYN
i ¼ 0; i ¼ 1;2 ð37Þ
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and considering Eq. (33):

WSYN
b ¼WDAMP

b ¼ 0 ð38Þ

In the small amplitudes’ limit the oscillations of the double pendula can be approximated by harmonic functions:

uci ¼ Uci sin sþ bcið Þ
usi ¼ Usi sin sþ bsið Þ

ð39Þ

so their velocities and accelerations are as follow:

_uci ¼ Uci cos sþ bcið Þ
_usi ¼ Usi cos sþ bsið Þ
€uci ¼ �Uci sin sþ bcið Þ
€usi ¼ �Usi sin sþ bsið Þ

ð40Þ

Substituting Eqs. (39) and (40) into Eq. (6) (and neglecting damping) one gets:

mB þ
X2

i¼1

ðmci þmsiÞ
 !

€xþ kxx ¼
X2

i¼1

msilsi þmcilaið Þ Usi sinðsþ bsiÞ þU3
si cos2ðsþ bsiÞ sinðsþ bsiÞ

� �

þ
X2

i¼1

mcilci Uci sinðsþ bciÞ þU3
ci cos2ðsþ bciÞ sinðsþ bciÞ

� �
: ð41Þ

Taking into account the relation:

cos2 c sin c ¼ 0:25 sin cþ 0:25 sin 3c

and indicating

U ¼ mb þ
X2

i¼1

ðmci þmsiÞ

Eq. (41) can be rewriten in the following form:

U€xþ kxx ¼
X2

i¼1

Fsi sinðsþ bsiÞ þ Gsi sinð3sþ 3bsiÞð Þ þ
X2

i¼1

Fci sinðsþ bciÞ þ Gci sinð3sþ 3bciÞð Þ; ð42Þ

where

Fsi ¼ ðmsilsi þmcilaiÞ Usi þ
1
4

U3
si

� �
; Gsi ¼

1
4
ðmsilsi þmcilaiÞU3

si;

Fci ¼ ðmcilciÞ Uci þ
1
4

U3
ci

� �
;Gci ¼

1
4
ðmcilciÞU3

ci:

The particular solution of Eq. (42) is given by:

x ¼
X2

i¼1

Xsi sinðsþ bsiÞ þ Q si sinð3sþ 3bsiÞð Þ þ
X2

i¼1

Xci sinðsþ bciÞ þ Q ci sinð3sþ 3bciÞð Þ; ð43Þ

where

Xsi ¼
Fsi

kx � U
; Q si ¼

Gsi

kx � 9U
; Xci ¼

Fci

kx � U
; Q ci ¼

Fci

kx � 9U
:

The acceleration of the beam is given in the following form:

€x ¼
X2

i¼1

Asi sinðsþ bsiÞ þ Dsi sinð3sþ 3bsiÞð Þ þ
X2

i¼1

Aci sinðsþ bciÞ þ Dci sinð3sþ 3bciÞð Þ ð44Þ

where Asi ¼ �Xsi; Dsi ¼ �9Q si; Aci ¼ �Xci; Dci ¼ �9Qci.
In the state of synchronization of the periodic oscillations of identical pendula the phase angles bci and bsi are constant

and independent of the initial conditions. There is no energy transfer from one double pendulum to the other one via the
beam so the synchronization energy (24) has to be equal to zero. Substituting Eq. (24) into Eq. (37) and considering Eqs.
(40) and (44) one gets:
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WSYN
k ¼

Z T

0
mcklck€x _uck cos uckdsþ

Z T

0
mcklak þmsklskð Þ€x _usk cos uskds

¼
Z T

o
mcklck

X2

i¼1

Asi sinðsþ bsiÞ þ Dsi sinð3sþ 3bsiÞð Þ þ
X2

i¼1

Aci sinðsþ bciÞ þ Dci sinð3sþ 3bciÞð Þ
 !

Uck cosðsþ bckÞdsþ
Z T

o
mcklak þmsklskð Þ

X2

i¼1

Asi sinðsþ bsiÞ þ Dsi sinð3sþ 3bsiÞð Þ þ
X2

i¼1

Aci sinðsþ bciÞð
 

þDci sinð3sþ 3bciÞÞ
!

Usk cosðsþ bskÞds ¼ 0; ð45Þ

where k = 1,2. Further calculations lead to the following form:

WSYN
k ¼mcklckUckp

X2

i¼1

Asi sinðbsi � bckÞ þ Aci sinðbci � bckÞð Þ
 !

þ mcklck þmsklskð ÞUskp
X2

i¼1

Asi sinðbsi � bskÞ þ Aci sinðbci � bskÞð Þ
 !

¼ 0: ð46Þ

Eq. (46) is fulfilled for both double pendula (i.e., for i = 1,2, k = 1,2) when:

sinðbsi � bckÞ ¼ 0:0;
sinðbci � bckÞ ¼ 0:0;
sinðbsi � bskÞ ¼ 0:0;
sinðbci � bskÞ ¼ 0:0:

ð47Þ

Assuming that bc1 ¼ 0o (one phase angle can be arbitrarily taken) one can show that Eq. (47) is fulfilled by all combinations of
phase angles where bc2; bs1; bs2 ¼ 0 or p, i.e., both double pendula simultaneously go through the stable equilibrium position
and simultaneously reach the maximum displacements.

Eqs. (47) and (39) allow the identification of the following synchronous configurations:

(i) bs1 ¼ 0; bs2 ¼ p; bc1 ¼ 0; bc2 ¼ p, the upper pendula are in the antiphase, i.e., us1 ¼ �us2; uc1 ¼ �uc2 and the upper
and the lower pendula of both double pendula are in the phase, i.e., _uc1 > 0) _us1 > 0; _uc2 < 0; _us2 < 0 (AAP in
Fig. 2(a)).

(a)

(d)(c)

(b)

PPAPPP

AAAPAA

Fig. 2. Synchronous configurations of two identical double pendula: (a) bs1 ¼ 0; bs2 ¼ p; bc1 ¼ 0; bc2 ¼ p, the upper and the lower pendula of both double
pendula are in the antiphase, i.e., us1 ¼ �us2; uc1 ¼ �uc2 and the upper and the lower pendula of both double pendula are in the phase, i.e.,
_uc1 > 0) _us1 > 0; _uc2 < 0; _us2 < 0 (AAP), (b) bs1 ¼ 0; bs2 ¼ p; bc1 ¼ p; bc2 ¼ 0, the upper and the lower pendula of both double pendula are in the

antiphase, i.e., us1 ¼ �us2; uc1 ¼ �uc2 and the upper and the lower pendula of both double pendula are in the antiphase, i.e.,
_uc1 > 0) _us1 < 0; _uc2 < 0; _us2 > 0 (AAA), (c) bs1 ¼ 0; bs2 ¼ 0; bc1 ¼ 0; bc2 ¼ 0, both double pendula move identically, i.e., us1 ¼ us2; uc1 ¼ uc2 and

the upper and the lower pendula of both double pendula are in the phase, i.e., _uc1 > 0) _us1 > 0; _uc2 > 0; _us2 > 0 (PPP), (d)
bs1 ¼ 0; bs2 ¼ 0; bc1 ¼ p; bc2 ¼ p, both double pendula move identically, i.e., us1 ¼ us2; uc1 ¼ uc2 and the upper and the lower pendula of both double
pendula are in the antiphase, i.e., _uc1 > 0) _us1 < 0; _uc2 > 0; _us2 < 0 (PPA).
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(ii) bs1 ¼ 0; bs2 ¼ p; bc1 ¼ p; bc2 ¼ 0, the upper pendula of both double pendula are in the antiphase, i.e.,
us1 ¼ �us2; uc1 ¼ �uc2 and the upper and the lower pendula of both double pendula are in the antiphase, i.e.,
_uc1 > 0) _us1 < 0; _uc2 < 0; _us2 > 0 (AAA in Fig. 2(b)).

(iii) bs1 ¼ 0; bs2 ¼ 0; bc1 ¼ 0; bc2 ¼ 0, both double pendula move identically, i.e., us1 ¼ us2; uc1 ¼ uc2 and the upper and
the lower pendula of both double pendula are in the phase, i.e., _uc1 > 0) _us1 > 0; _uc2 > 0; _us2 > 0 (PPP in Fig. 2(c)).
(iv) bs1 ¼ 0; bs2 ¼ 0; bc1 ¼ p; bc2 ¼ p, both double pendula move identically, i.e., us1 ¼ us2; uc1 ¼ uc2 and the upper and
the lower pendula of both double pendula are in the antiphase, i.e., _uc1 > 0) _us1 < 0; _uc2 > 0; _us2 < 0 (PPA in
Fig. 2(d)). In the cases (i–ii) the beam is at rest while in the cases (iii–iv) it oscillates harmonically and its oscillations
are in the antiphase to the oscillations of the upper pendula.

Note that the conditions given by Eq. (45) allow also for non-symmetrical configurations given
by ðbs1 ¼ 0; bs2 ¼ 0; bc1 ¼ 0; bc2 ¼ pÞ; ðbs1 ¼ 0; bs2 ¼ p; bc1 ¼ 0; bc2 ¼ 0Þ; ðbs1 ¼ 0; bs2 ¼ 0; bc1 ¼ p; bc2 ¼ 0Þ or ðbs1 ¼ 0;
bs2 ¼ p; bc1 ¼ p; bc2 ¼ pÞ. In these configurations both double pendula have to reach different normal modes of oscillations
for the same frequency (as required by Eqs. (39)), which is proven to be impossible in the small oscillations’ approximation
[1].

5. Numerical results

5.1. Two identical double pendula

We consider the examples of synchronous configurations and the bifurcation diagrams showing the dependence of the
type of the synchronous state on the initial conditions and system parameters. Our results have been obtained by numerical
integration (by 4th order Runge–Kutta method) of Eqs. (4)–(6). In our calculations we consider the following values
of the system parameters (identical double pendula):mci ¼ 1; msi ¼ 1; mB ¼ 10; lci ¼ 1; lsi ¼ 1; cuci ¼ 0:01;
cusi ¼ 0:01; cx ¼ 3:4147; NDi ¼ 0:02; i ¼ 1;2. The escapement mechanisms work In the range �cc < uci < cc; cc ¼ 5

�
. The

damping coefficient of the beam cx gives the assumed logarithmic decrement of damping D ¼ lnð1:5Þ for the stiffness coef-
ficient kx ¼ 50:0. The stiffness coefficient kx has been taken as a bifurcation parameter.

Fig. 3(a)–(d) presents the examples of four synchronous configurations introduced in Section 4 (Fig. 2(a)–(d)). We show
time series of the double pendula’s uci;usi and beam’s x (for better visibility 10 times enlarged) displacements versus dimen-
sionless time s. The intervals of existence of these configurations and energy balances which are associated with them are
presented in Figs. 4(a)–(d), 5(a)–(c) and 6(a)–(c).

Fig. 3(a) shows the configurations AAP: the upper pendula of both double pendula are in the antiphase, i.e.,
us1 ¼ �us2; uc1 ¼ �uc2 and the upper and the lower pendula of both double pendula are in the phase, i.e.,
_uc1 > 0) _us1 > 0; _uc2 < 0; _us2 < 0. This configuration is stable for 5:0 < kx < 500:0. The energy supplied by the escape-

ment mechanism is dissipated by the pendula’s dampers and the beam is at rest:

WDAMP
c1 þWDAMP

s1 ¼WDRIVE
1 ;

WDAMP
c2 þWDAMP

s2 ¼WDRIVE
2 ;

WSYN
1 ¼WSYN

2 ¼WSYN
b ¼WDAMP

b ¼ 0:0:

The energy balance during this configuration is shown in Fig. 5(a). Synchronous configuration AAA is shown in Fig. 3(b): the
upper pendula of both double pendula are in the antiphase, i.e., us1 ¼ �us2; uc1 ¼ �uc2 and the upper and the lower pen-
dula of both double pendula are in the antiphase, i.e., _uc1 > 0) _us1 < 0; _uc2 < 0; _us2 > 0. This configuration coexists with
the configuration AAP for 5:0 < kx < 500:0. The energy balances of AAP and AAA configurations are the same (see Fig. 5(a)).
Fig. 3(c) shows PPP configuration: both double pendula move identically, i.e., us1 ¼ us2; uc1 ¼ uc2 and the upper and the
lower pendula of both double pendula are in the phase, i.e., _uc1 > 0) _us1 > 0; _uc2 > 0; _us2 > 0. At this configuration part
of the energy supplied by the escapement mechanisms is dissipated by the pendula dampers and the rest (synchronization
energy) is transferred to the beam. The energy transferred by double pendula excites the beam’s oscillations and is dissipated
by the beam damper cx:

WDAMP
c1 þWDAMP

s1 þWSYN
1 ¼WDRIVE

1 ;

WDAMP
c2 þWDAMP

s2 þWSYN
2 ¼WDRIVE

2 :

WSYN
1 þWSYN

2 ¼WSYN
b ¼WDAMP

b

The energy balance during this configuration is shown in Fig. 5(b). The configuration PPA is shown in Fig. 3(d): both double
pendula move identically, i.e., us1 ¼ us2; uc1 ¼ uc2 and the upper and the lower pendula of both double pendula are in the
antiphase, i.e., _uc1 > 0) _us1 < 0; _uc2 > 0; _us2 < 0. The energy balance for PPA and PPP configurations are the same (see
Fig. 5(b)).
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Configurations PPP and PPA coexist with configurations AAP and AAA only in particular intervals of stiffness coefficient
kx. Fig. 4(a) presents the bifurcation diagram usi;usi; x versus kx. The calculations started for kx ¼ 50:0 and the following ini-
tial conditions:

uc1 ¼ 0:5; us1 ¼ 0:5; uc2 ¼ 0:5; us2 ¼ 0:5; _uc1 ¼ 0:0; _us1 ¼ 0:0; _uc2 ¼ 0:0; _us2 ¼ 0:0;
x ¼ _x ¼ 0;

0.25 0.25

0.250.25

-0.25 -0.25

-0.25-0.25

0.0 0.0

0.00.0

-0.5 -0.5

-0.5-0.5

0.5 0.5

0.50.5

si ci

10

00

00

66

66

33

33

(a)

(d)(c)

(b)
c1 c

c1 c

c1 c

c1 c

s1 s

s1 s

s1 s

s1 s

10x 10x

10x 10x

PPP

AAP AAA

PPA

si ci

10

si ci

10
si ci

10

Fig. 3. Time series of double pendula’ uci;usi and beam’s x (for better visibility 10 times enlarged) displacements versus dimensionless time s illustrating
different synchronous configurations of two identical double pendula: mci ¼ 1; msi ¼ 1; mB ¼ 10; lci ¼ 1; lsi ¼ 1; cuci ¼ 0:01;
cusi ¼ 0:01; cx ¼ 3:4147; NDi ¼ 0:02; i ¼ 1;2, (uc1 – bold line, uc2 – bold blue line, us1 – red line, us1 – blue line, x – green line), (a) AAP synchronization,
kx ¼ 50:0, (b) AAA synchronization, kx ¼ 300:0, (c) PPP synchronization, kx ¼ 50:0 (different initial conditions than in (a)), (d) PPA synchronization, kx ¼ 5:0.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Transition from PPP to AAA synchronous configurations of two identical double pendula: mci ¼ 1; msi ¼ 1; mB ¼ 10; lci ¼ 1; lsi ¼ 1; cuci ¼ 0:01;
cusi ¼ 0:01; cx ¼ 3:4147; NDi ¼ 0:02; i ¼ 1;2, (uc1 – bold line, uc2 – bold blue line, us1 – red line, us1 – blue line, x – green line); (a) bifurcation diagram
showing the transition from AAP to AAA synchronous configurations, (b) time series of the double pendula uci;usi and the beam’s x (for better visibility 10
times enlarged) displacements versus dimensionless time s illustrating NS synchronous configuration, kx ¼ 88:0. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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which lead to PPP configuration. The increase of the bifurcation parameter kx leads to the loss of configuration’s stability for
kx ¼ 81:5. In the interval 81:5 < kx < 91:6 we observe previously unpredicted nonsymetrical synchronization NS. For
kx > 91:6 nonsymmetrical synchronization is replaced by the synchronous configuration AAA. Fig. 4(b) presents time series
of the double pendula’s uci;usi and beam’s x (for better visibility 10 times enlarged) displacements versus dimensionless
time s during NS synchronization. The double pendula’ oscillations during this type of synchronization are similar to the
oscillations at PPP configuration, but pendula’ amplitudes are not equal, i.e., uc1 – uc2 and us1 – us2. The amplitudes of

Fig. 5. Energy balances for different synchronous configurations; (a) AAP and AAA configurations, (b) PPP and PPA configurations, (c) NS configuration.

Fig. 6. Regions of existence of PPP and PPA synchronous configurations of two identical double pendula:mci ¼ 1; msi ¼ 1; mB ¼ 10; lci ¼ 1; lsi ¼ 1;
cuci ¼ 0:01; cusi ¼ 0:01; cx ¼ 3:4147; NDi ¼ 0:02; i ¼ 1;2, (uc1 – bold line, uc2 – bold blue line, us1 – red line, us1 – blue line, x – green line); (a) bifurcation
diagram showing the transition from PPP configuration to amplitude death AD, (b) time series of the double pendula’ uci;usi and the beam’s x (for better
visibility 10 times enlarged) displacements versus dimensionless time s illustrating PPP3 synchronous configuration, kx ¼ 42:5, (c) bifurcation diagram
showing the transition from PPA configuration to amplitude death AD. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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the oscillations of the lower and upper pendula of the first double pendulum are larger than the equivalent amplitudes of the
second double pendulum, i.e., the first double pendulum is excited by the second one. Note that the phase shifts between the
oscillations of both double pendula visible in Fig. 4(b) also indicate the energy transfer between double pendula. In this syn-
chronous state the part of the energy supplied by the escapement mechanism of the second double pendulum is dissipated
by the pendulum’s dampers and the other part is transferred to the beam (synchronization energy WSYN

2 Þ. Part of WSYN
2 excites

the beam (WSYN
b Þ and is dissipated in the beam damper cx. The rest of synchronization energy WSYN

2 (denoted as WSYN
1 )is trans-

ferred to the first double pendulum via the beam. The dampers of the first double pendulum dissipate the energy supplied by
the escapement mechanism and the energy transferred from the second pendulum:

WDAMP
c2 þWDAMP

s2 þWSYN
2 ¼WDRIVE

2 ;

WSYN
2 ¼WSYN

b þ WSYN
1

			 			; WSYN
1 < 0;

WSYN
b ¼WDAMP

b ;

WDAMP
c1 þWDAMP

s1 ¼WDRIVE
2 þ WSYN

1

			 			:
The energy balance for nonsymmetrical configuration is shown in Fig. 5(c).

Fig. 6(a) shows the bifurcation diagram for decreasing values of kx. We start from the configuration PPP (we use the same
initial conditions as for the calculation of the diagram of Fig. 4(a)). The configuration PPP is stable down to the value
kx ¼ 45:2. The deacrease of kx causes the decrease of the amplitudes of both double pendula. At kx ¼ 45:2 the difference be-
tween amplitudes of upper and lower pendula uci �usi (i = 1,2) decreases below the cc what disturbs the regular operation
of the escapement mechanisms. First, we observe chaotic oscillations of both double pendula for 45:2 > kx > 44:0. In the
interval 44:0 > kx > 41:4 the escapement mechanisms become regular again but they supply smaller amounts of energy
as every third impulse is missing. We observe synchronization PPP3 which is similar to PPP but the pendula oscillate with
three times longer periods. Time series of the pendula displacements during this synchronization are shown in Fig. 6(b).

Fig. 7. Synchronization of the system with two nonidentical double pendula with different length (the length of the lower pendulum of double pendulum 2
lc2 has been taken as a control parameter, uc1 – bold line, uc2 – bold blue line, us1 – red line, us1 – blue line, x – green line); (a) bifurcation diagram showing
the transition from PPP to AAA configuration lc2 ¼ 1:001, (b) bifurcation diagram showing the transition from NAAP configuration to the turn off of the
escapement mechanism of double pendulum 2, (c) time series of the double pendula uci;usi and the beam’s x (for better visibility 10 times enlarged)
displacements versus dimensionless time s illustrating NAAP synchronous configuration, lc2 ¼ 1:051, (d) time series of the double pendula uci;usi and the
beam’s x (for better visibility 10 times enlarged) displacements versus dimensionless time s illustrating the oscillations in the case when the escapement
mechanism of double pendulum 2 is turned off, lc2 ¼ 1:25. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Further decrease of kx leads to the chaotic oscillations in the interval 41:4 > kx > 40:9 and next to the amplitude death as the
result of the turn off of the escapement mechanisms. Fig. 6(c) presents kx interval for which the configuration PPA can be
observed. In the numerical calculations we start from kx ¼ 5:0 and the following initial conditions:

uc1 ¼ �0:08; us1 ¼ 0:1; uc2 ¼ �0:08; us2 ¼ 0:1; _uc1 ¼ 0:0; _us1 ¼ 0:0; _uc2 ¼ 0:0; _us2 ¼ 0:0;
x ¼ 0:01; _x ¼ 0:0;

which lead to the stable PPA configuration. The increase of the stiffness coefficient kx leads to the decrease of the amplitudes
of the double pendula oscillations, the escapement mechanisms’ turn off and finally to the amplitude death AD at kx ¼ 27:0.

5.2. Two nonidentical double pendula

To observe how the behavior of the system is sensitive to small parameter mismatch consider the bifurcation diagram
shown in Fig. 7(a). Only one value of the system parameters slightly differs from that used in the calculations of bifurcation
diagram of Fig. 6(a). We take lc2 ¼ 1:001 (previously lc2 ¼ 1:000 has been taken). The region of existence of the PPP config-
uration is the same as in Fig. 6(a) but at kx ¼ 45:2 we observe the jump to AAA configuration which is stable in the whole
range of the considered values of kx. In the bifurcation diagrams of Fig. 7(b) and 8(a) we fixed the value of kx ¼ 50:0 and con-
sider the length lc2as a bifurcation parameter. Calculating the bifurcation diagram of Fig. 7(b) we start from lc2 ¼ 1:0 and the
following initial conditions:

uc1 ¼ 0:5; us1 ¼ 0:5; uc2 ¼ �0:5; us2 ¼ �0:5; _uc1 ¼ 0:0; _us1 ¼ 0:0; _uc2 ¼ 0:0; _us2 ¼ 0:0;
x ¼ 0:0; _x ¼ 0:0;

which lead to stable AAP configuration shown in Fig. 3(a). The increase of length lc2 leads to the loss of symmetry. (For the
case of unmovable beam the period of oscillations of double pendulum 2 would be larger than the period of double pendu-
lum 1.) The oscillations of the beam cause the energy transfer from double pendulum 2 to double pendulum 1. The loss of the

Fig. 8. Synchronization of the system with two double pendula with different length (the length of the lower pendulum of double pendulum 2 lc2 has been
taken as a control parameter), (uc1 – bold line, uc2 – bold blue line, us1 – red line, us1 – blue line, x – green line); (a) bifurcation diagram showing the
transition from NPPP configuration to quasiperiodic oscillations via NAAAconfiguration, (b) time series of the double pendula’ uci;usi and the beam’s x (for
better visibility 10 times enlarged) displacements versus dimensionless time s illustrating NPPP synchronous configuration, lc2 ¼ 1:02, (c) time series of the
double pendula’ uci;usi and the beam’s x (for better visibility 10 times enlarged) displacements versus dimensionless time s illustrating NAAA synchronous
configuration, lc2 ¼ 1:1005, (d) time series of the double pendula’s uci;usi and beam’s x (for better visibility 10 times enlarged) displacements versus
dimensionless time s illustrating quasiperiodic oscillations QP, lc2 ¼ 1:19. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

988 P. Koluda et al. / Commun Nonlinear Sci Numer Simulat 19 (2014) 977–990



energy by double pendulum 2 and the increase of the energy of double pendulum 1 causes that the amplitudes of the pen-
dulum 1 are larger than the amplitudes of pendulum 2 and the periods of oscillations of both double pendula are equal (due
to the beam’s oscillations). This type of nonsymmetrical synchronization is illustrated in Fig. 7(c) and indicated as NAAP. The
energy balance during this synchronization is qualitatively similar to the balance of NS synchronization (see Fig. 5(c)). Syn-
chronization configuration NAAP is stable up to the value lc2 ¼ 1:155. Decreasing the amplitudes of the pendula’ oscillations
causes that for larger values of lc2 the escapement mechanism of double pendulum 2 is switched off and the whole system is
excited by the escapement mechanism of double pendulum 1. Double pendulum 2 oscillates due to the energy supplied by
pendulum 1 (via the beam). This behavior is illustrated in Fig. 7(d).

Fig. 8(a) shows the next bifurcation diagram where the length lc2 is a bifurcation parameter. It starts from lc2 ¼ 1:0 and
configuration PPP of Fig. 3(c) (we use the same initial conditions as in the calculations of Fig. 4(a)). The increase of lc2 leads to
the loss of symmetry. We observe the energy transfer from double pendulum 1 to double pendulum 2 (the opposite case to
the one described in Fig. 7(b)). The loss of energy by double pendulum 1 and the increase of the energy of double pendulum 2
causes that the amplitudes of pendulum 2 are larger than the amplitudes of pendulum 1 and the periods of oscillations of
both double pendula are equal. PPP synchronous configuration is replaced by nonsymmetrical configuration NPPP. The time
series of pendula’s displacements characteristic for this configuration are shown in Fig. 8(b). The energy balance during this
configuration is qualitatively the same as during NS configuration. Configuration NPPP is stable up to lc2 ¼ 1:029 when we
observe transition to next configuration NAAA shown in Fig. 8(c). NAAA configuration is stable in the interval
1:029 < lc2 < 1:16. For larger values of lc2 double pendula’ oscillations become quasiperiodic (the amount of energy trans-
ferred from double pendulum 2 to double pendulum 1 is not sufficient to keep the periods of both pendula equal). Time ser-
ies characteristic for quasiperiodic oscillations are shown in Fig. 8(d).

The quasiperiodic character of the oscillations shown in Fig. 8(d) is proven on Poincare maps shown in Fig. 9(a) (for
lc2 ¼ 1:19). The map shows the angular velocities of the upper and lower pendula of both double pendula versus the displace-
ments of these pendula. Both angular velocities and displacements are taken at the moments when the angular velocity of
the lower pendulum of the first double pendulum changes the sign from positive to negative one. The maps shown in
Fig. 9(a) consist of the closed curves which is characteristic for quasiperiodic behavior. Note the existence of the high-peri-
odic windows in the quasiperiodic regime as can be seen in Fig. 9(b) (for lc2 ¼ 1:194). The period oscillations is equal to 82T.

6. Conclusions

Our studies show that two double pendula self-exited by the escapement mechanism hanging from the horizontally mo-
vable beam can synchronize. For identical pendula four different synchronous configurations are possible: (i) the upper pen-
dula of both double pendula are in the antiphase, (i.e., us1 ¼ �us2; uc1 ¼ �uc2) and the upper and the lower pendula of both
double pendula are in the phase, i.e., _uc1 > 0) _us1 > 0; _uc2 < 0; _us2 < 0 (AAP in Fig. 2(a)), (ii) the upper pendula of both
double pendula are in the antiphase, (i.e., us1 ¼ �us2;uc1 ¼ �uc2) and the upper and the lower pendula of both double pen-
dula are in the antiphase, i.e., _uc1 > 0) _us1 < 0; _uc2 < 0; _us2 > 0 (AAA in Fig. 2(b)), (iii) both double pendula move iden-
tically, i.e., us1 ¼ us2; uc1 ¼ uc2 and the upper and the lower pendula of both double pendula are in the phase,
i.e., _uc1 > 0) _us1 > 0; _uc2 > 0; _us2 > 0 (PPP in Fig. 2(c)), (iv) both double pendula move identically, i.e.,
us1 ¼ us2; uc1 ¼ uc2 and the upper and the lower pendula of both double pendula are in the antiphase, i.e.,
_uc1 > 0) _us1 < 0; _uc2 > 0; _us2 < 0 (PPA in Fig. 2(d)). In the cases (i–ii) the beam is at rest while in the cases (iii–iv) it oscil-

lates harmonically and its oscillations are in the antiphase to the oscillations of the upper pendula. When the pendula are
nonidentical, i.e., have different lengths (and periods of oscillations) for small parameters’ mismatch we observe the

Fig. 9. Synchronization of the system with two double pendula with different length (the length of the lower pendulum of double pendulum 2 lc2 has been
taken as a control parameter): (uc1 – bold line, uc2 – bold blue line, us1 – red line, us1 – blue line) (a) Poincare map showing quasiperiodic behavior,
lc2 ¼ 1:19, (b) Poincare map showing the long periodic window in quasiperiodic regime, lc2 ¼ 1:194. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

P. Koluda et al. / Commun Nonlinear Sci Numer Simulat 19 (2014) 977–990 989



synchronous states for which the phase difference between the pendula is close to 0 or p but for larger differences unsyn-
chronized quasiperiodic or chaotic oscillations dominate. Similar synchronous states have been observed experimentally in
[22] but to stabilize them the special controlling procedure has been applied.

The observed behavior of system (1) can be explained by the energy expressions derived in Section 3. which also show
why other synchronous states are not possible. We give the evidence that the observed behavior of the system is robust as it
occurs in the wide range of system parameters and can be observed experimentally.
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Streszczenie

Wyniki przedstawione w pracy dotycz¡ dynamiki oraz mo»liwo±ci synchronizacyjnych (synchron-

icznego ruchu okresowego) ukªadu skªadaj¡cego si¦ z szeregu samowzbudnych wahadeª podwójnych

podczepionych do belki. W skªad pracy wchodz¡ trzy artykuªy opublikowane w czasopismach z listy

JCR.

W pierwszym artykule �Synchronization of two self-excited double pendula� oscylacje wahadeª za-

pewnione s¡ przez tªumienie van der Pola nap¦dzaj¡ce górne wahadªa. Dla tego ukªadu wyprowadzono

pi¦¢ ci¡gªych równa« ró»niczkowych drugiego rz¦du. Badania analityczne skªadaªy si¦ z wyznaczenia

na podstawie bilansu energii mo»liwych stanów synchronizacyjnych. Dla wahadeª identycznych wyzn-

aczono cztery mo»liwe stany synchronizacyjne. Analiz¦ numeryczn¡ przeprowadzono przy pomocy

programu do ±ledzenia orbit okresowych Auto07p. Umo»liwia on ±ledzenie ewolucji rozwi¡za« okresow-

ych w funkcji parametrów ukªadu oraz okre±lenie ich stateczno±ci. W badaniach tych potwierdzono

wyst¦powanie wszystkich stanów synchronizacyjnych uzyskanym metod¡ analityczn¡. Dalsze badania

numeryczne dotyczyªy analizy bifurkacyjnej uzyskanych rozwi¡za« okresowych przy zmianie cz¦sto±ci

drga« wªasnych belki. Stwierdzono, »e w badanym zakresie warto±ci parametru bifurkacyjnego dwa z

czterech rozwi¡za« s¡ zawsze stateczne, natomiast pozostaªe dwa zmieniaj¡ swoj¡ stateczno±¢.

Nast¦pnym etapem bada« byªo rozszerzenie analizy na dowoln¡ liczb¦ wahadeª podwójnych. Rezultatem

tych rozwa»a« jest artykuª �Dynamics of n coupled double pendula suspended to the moving beam�.

Analityczne wyprowadzono warunek synchronizacji dla dowolnej liczy wahadeª podaj¡c równocze±nie

algorytm opieraj¡cy si¦ na hipotezach Goldbach'a pozwalaj¡cy na obliczenie ilo±ci rozwi¡za«. Ze

wzgl¦du na fakt, »e liczba rozwi¡za« ro±nie wykªadniczo wraz ze zwi¦kszaj¡c¡ si¦ liczb¡ wahadeª

zaprezentowano stany synchroniczne dla 3, 4 oraz 5 wahadeª podwójnych. Dla ukªadu zªo»onego z

3 wahadeª podwójnych okre±lono cztery mo»liwe stany synchronizacji. Ukªad 4 wahadeª podwójnych

synchronizowaª si¦ na cztery mo»liwe sposoby, natomiast dla ukªadu zªo»onego z 5 wahadeª podwój-

nych okre±lono sze±¢ mo»liwych stanów synchronizacji. Analiza bifurkacyjna uzyskanych rozwi¡za«

okresowych pokazaªa, »e ich stateczno±¢ jest zale»na od cz¦sto±ci drga« wªasnych belki.

W ostatnim artykule �Synchronization con�gurations of two coupled double pendula� analizowany

model ukªadu skªada si¦ z belki oraz dwóch wahadeª podwójnych podczepionych do niej. Ruch wahadeª

wymuszany jest mechanizmem zegarowym umieszczonym pomi¦dzy górnym a dolnym wahadªem w

ka»dym podwójnym wahadle. Zaproponowany model zostaª opisany za pomoc¡ nieci¡gªych równa«

ró»niczkowych drugiego rz¦du. Uzyskany ukªad równa« daª mo»liwo±¢ wyznaczenia warto±ci ener-

gii przekazywanych pomi¦dzy poszczególnymi elementami ukªadu. Bilans energii pozwoliª na analiz¦
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stanów synchronicznych wahadeª podwójnych i wyznaczenie czterech takich kon�guracji. Nast¦pnie

przeprowadzono badania numeryczne maj¡ce na celu potwierdzenie uzyskanych wyników analitycz-

nych. Obliczenia wykonano dla wahadeª identycznych tzn. o jednakowych masach i dªugo±ciach,

oraz dla wahadeª nieidentycznych (zmieniano dªugo±¢ wahadeª). Dla wahadeª identycznych oraz nie-

identycznych obliczono wykresy bifurkacyjne i wyznaczono obszary istnienia poszczególnych rodzajów

synchronizacji przy zmianie cz¦sto±ci drga« wªasnych belki.

Teza i cel pracy.

Teza:

Odpowiedni dobór parametrów podwójnych wahadeª powoduje wzrost ich mo»liwo±ci synchroniz-

acyjnych.

Cel pracy:

Gªównym celem pracy jest opis wpªywu ruchu belki na mo»liwo±ci synchronizacyjne podwój-

nych wahadeª przyczepionych do niej. Dla identycznych wahadeª zostan¡ przeanalizowane analitycznie

wyst¦puj¡ce rozwi¡zania okresowe oraz numerycznie zbadane zostan¡ zakresy parametrów belki dla

których s¡ stateczne. Nast¦pnie analiza zostanie rozszerzona o numeryczne badania synchroniza-

cji w ruchu okresowym przy nieidentycznych wahadªach (ró»ni¡cych si¦ masami). W wyniku pracy

powstanie katalog mo»liwych rodzajów synchronizacji w ruchu okresowym w przestrzeni parametrów

ukªadu dla n podwójnych wahadeª.


