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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 A growing interest in the theory of nonlinear dynamical systems has aroused in the last 

few years. Applications of nonlinear dynamics can be observed in many different fields of 

science such as physics, chemistry, biology, economics, engineering sciences.  

 One of the most exciting and fastest growing sectors of nonlinear dynamics is the 

theory of bifurcation and chaos. According to this theory, dynamical systems, in which there 

are rapid changes in stability solutions – bifurcation – or irregular, sensitive to initial 

conditions solutions – chaos, are analyzed. 

 The reason for observation of chaotic behavior in dynamical systems is their property, 

which consists in exponential propagation of initially close trajectories in the phase space [1].  

 The first discovery of chaotic behavior was presented by Jacques Salomon Hadamard, 

who published his thesis in 1898 [2], describing the balls moving without friction on the 

surface of negative curvature. Hadamard proved that all trajectories would be unstable under 

those conditions – they would be exponentially apart from each other. 

 In the late nineteenth and early twentieth century, the French mathematician Henri 

Poincaré dealt with the problem of orbits of three mutually attracting celestial bodies [3] 

(e.g., a star and two planets). Recognizing that the behavior of orbits depends on starting 

points, Poincaré was able to show very complicated orbits – now called chaotic orbits. 

Further, remarkable works on chaotic systems were presented by G. Birkhoff in 1920 [4], 

M.L. Cartwright in 1952 [5], S. Smale in 1961 [6] and Russian mathematicians, especially 

A.N. Kolmogorov [7,8] and his colleagues. 

 In 1963, Edward Lorenz proposed and examined the first autonomous chaotic system 

of three coupled nonlinear differential equations modeling the thermal convection in the 

atmosphere [9]. He proved that for a certain set of parameters, the system behaved in 

a chaotic manner – the graph of variables in the phase space demonstrated a strange attractor, 

now referred to as the Lorenz attractor.  

 Thirteen years later (1976) Otto Eberhard Rössler presented even a simpler system of 

three coupled nonlinear differential equations [10]. For some parameters, the trajectory 
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starting from the initial point located on the surface goes into a set called the Rössler strange 

attractor. 

 In 1999, Guanrong Chen and Tetsushi Ueta presented a simple three-dimensional 

autonomous system [11], where they observed a new chaotic attractor, which had features of 

the Lorenz and Rössler attractors. 

 In the next few years, more and more researchers and scientists dealt with the issue of 

chaos. The reason for this is the fact that the phenomenon of chaos is observed in many areas 

of life and science. An example of this, some works from the area of biology [12,13,14], 

chemistry [15,16,17], economics [18,19,20], physics [21,22,23] can be quoted. 

 The phenomenon of chaos in mechanical and electrical systems has been also well 

known and analyzed for many years. Numerous authors of papers describing physical systems 

use the Duffing equation [24-28] to model different types of nonlinear phenomena or the Van 

der Pol equation [29-34], which is used to describe self-excited systems. 

 The development of scientific papers on deterministic chaos has led to progress in the 

description of transition scenarios to chaotic motion [45-50,52,53]. In addition, new research 

issues such as the control of chaos [35-39] and the synchronization of chaos [40-44] have 

been observed. 

 

1.1. Scenarios of a transition to chaos 

 

 The first scenario of a transition from periodic to chaotic behavior was presented by 

L.D.Landau in 1944 [45] and four years later (1948) by E.A.Hopf [46], independently. The 

Landau-Hopf scenario assumed that during a transition of the control parameter that 

characterized the analyzed system, for example the critical value of the Reynolds number (R), 

which is a parameter characterizing the fluid flow, the steady flow loses its stability. During 

an increase in the Reynolds number, some consecutive, new disproportionate frequencies 

appear (Fig.1.1). 

 

 

Fig.1.1. Scheme of the Landau-Hopf scenario. 
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For R→∞, the velocity of the generation of a new frequency increases, which leads to an 

appearance of a wide continuous frequency range characteristic of chaotic behavior. 

A solution to the Landau-Hopf scenario can be expressed by the formula: 

 

���, �� = � 	
�����
�
����
�

���
 

                   

 

where:	� = ���, ��, … , ���; � → ∞; � → ∞.	  
 

 Another similar scenario of a transition to chaos is the Newhouse-Ruelle-Takens 

scenario [47]. It refers to the Landau-Hopf scenario and corrects it. In 1971, Ruelle and 

Takens proved [48] that an infinite series of Hopf bifurcations was not required in order to 

achieve the stabilization of the system. They presented a system, which just after the third 

Hopf bifurcations reached the orbit, might lose its stability and transform into a strange 

chaotic attractor (a more detailed description of the NRT scenario will be discussed later in 

this study). 

 Another scenario of a transition to chaos was suggested by M.J.Feigenbaum in 1978 

[49,50]. According to this approach, the way of a transition to chaos can be realized by 

a series of period doubling bifurcations. An example is a simple, one-dimensional logistic 

map: 

 

���� = 4"#�1 − ���,					0 < � < 1, 
 

where λ is the control parameter. Feigenbaum discovered that the factor of the difference 

between successive approximations in place of the bifurcation has a constant value: 

 

lim�→� +� = lim�→�
"��� − "�

"��� − "���
= 4,6692016 … 

 

Thus, he obtained a fixed factor of convergence, which was also found in the Lorenz model 

and in the Henon map [51]. The discovery of this constant is an important contribution to the 
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explanation of more complex behavior of the chaotic system. Therefore, this convergence 

factor is called the Feigenbaum constant. 

 Another well-known way to chaos is the Pomeau and Manneville scenario [52,53], 

which was demonstrated in 1980. It manifests with a transition to chaotic behavior through 

a sudden jump-type solution during the time evolution of the system. This effect is called 

intermittency, i.e., a transition between the two types of behavior – the periodic-like and 

chaotic behavior. Analyzing the Lorenz system, they observed that despite of the chaotic 

behavior, the trajectory got in the neighborhood of the fixed point, where it could stay for 

a very long time. A movement to the environment of the fixed point is seemingly at random. 

The reason for the occurrence of intermittency in the Lorenz system is saddle-node 

bifurcation, which leads to the formation of stable and unstable fixed points.  

 Current studies often refer to the above-mentioned scenarios in the analysis of 

complex dynamical systems. 

 In the following years, extensive research has led to an emergence of new discoveries 

in scenarios of a transition to chaos. One of the most interesting and currently studied 

phenomena in nonlinear dynamics is an existence of a stable three-dimensional torus (3D 

torus). 

 

1.2. 3D torus 

 

Initially, it was thought that the existence of a 3D torus was unlikely (according to the 

theory of NRT). However, numerical studies by C.Grebogi, E.Ott, J.A.Yorke [54,55], 

Battelino [56] and experimental studies by J.P.Gollub, S.V.Benson [57], P.S.Linsay, 

A.W.Cumming [58], R.Alaggio, G.Rega [59] have confirmed the presence of a stable 3D 

torus in the phase space of dynamical systems, in contrary to the NRT theory. Further 

convincing evidence for the existence of a 3D torus was presented in works by U.Feudel, 

W.Jansen, J.Kurths [60], V.S.Anishchenko [61], U.Feudel [62], J.Yang [63]. In their studies, 

a 3D torus appeared during a transition to chaos and bifurcations following the scheme: 2D 

torus→3D torus→2D torus→chaos. The occurrence of a 3D torus is related to the fact that the 

perturbations that affect these attractors are not generic due to the symmetry of the system 

(according to the NRT theory, a 3D torus is unstable when subjected to some general 

perturbations). 
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 Another way of a transition to chaos containing a 3D torus was demonstrated in 

studies by M.Lopez and F.Marquesa [64,65]. Using the Navier-Stokes equations, they 

introduced the so-called “gluing bifurcation” of two 3D tori to a new (non-chaotic) 3D torus. 

 At the turn of the century, M.A.Matias, E.Sanchez and D.Pazo showed in their works 

a 3D torus in the ring of unidirectionally coupled Chua oscillators [66] and in the ring of 

Lorenz oscillators [67,68,69]. They found [66,67] that the third zero Lyapunov exponent 

appeared as a result of the symmetric Hopf bifurcation. Then, we observe an additional 

rotational degree of freedom, which corresponds to a simultaneous shift to the neighboring 

oscillator and an advance in time by a period divided by N (N is a number of oscillators in the 

ring). This leads to the third frequency in the torus and to the high-dimensionality of the 

chaotic attractor. They found that the spatio-temporal symmetry allowed one to obtain a stable 

three-dimensional attractor in a finite range of the control parameter. In [68] a different way 

of a transition to chaos, which is carried out according to the scheme: 2D torus→3D 

torus→high-dimensional chaos, is presented. 

 Also, scientists from China presented a study in which they observed a stable 3D 

torus. For example, Q.Bi [70] analyzed two parametrically coupled Van der Pol oscillators.  

He presented two ways of bifurcation periodic solutions: 

1. Periodic solution as a result of generalized static bifurcation leads to a quasi-periodic 

solution. 

2. Periodic solution as a result of the Hopf bifurcation leads to a stable 3D torus. 

With a further increase in the control parameter, the solutions in both cases lead to chaotic 

behavior. 

 On the other hand, the research conducted by W.Wu, Z.Chen, Z.Yuan [71] presented 

an autonomous system of four first-order equations, which showed a rich dynamical behavior. 

With an increase in the control parameter, the system evolves from a 3D torus, through 

a series of periodic, quasi-periodic, chaotic behavior and then proceeds to a hyper-chaotic 

solution, ending in a periodic solution.  

 The phenomenon of a 3D torus is increasingly recognized and observed in the analysis 

of dynamical systems. 

 The present Subsection is closely related to previous Subsection 1.1 because the 

presence of a 3D torus is noticeable by a transition to chaotic behavior. Currently, there are 

many works that describe different scenarios of a transition to chaos containing a 3D torus. In 

this thesis, one of these scenarios is presented. 

 



8 | P a g e  

 

1.3.  Ring of coupled oscillators – a rotating wave 

 

 In the cases of series one-way coupled oscillators in a ring, an occurrence of the 

phenomenon of the so-called rotating wave (RW) should be mentioned. The appearance of the 

rotating wave is associated with a loss of stability of the system. 

 Already in 1952, A.M.Turing [72] started the study of linear instabilities in rings of 

uniform systems. In later years, the phenomenon of the RW was observed in numerical 

[73,74] and experimental [75] studies. 

 In 1997, A.Matias, V.Perez-Munuzuri, M.N.Lorenzo, I.P.Marino and V.Perez-Villar 

[76] studied a system of four unidirectionally coupled Chua oscillators. The system retained 

symmetry – each of the oscillators had the same parameters. They found that the formation of 

the rotating wave occurred due to a loss of stability of the system. The stability loss of the 

system was a result of the Hopf bifurcation. They also found that a similar mechanism of 

a loss of stability occurred in the ring of Lorenz oscillators. As a result, they found that the 

source of an occurrence of the RW in the rings of unidirectionally coupled nonlinear 

oscillators was the symmetry of that configuration.  

 A detailed study on an occurrence of the rotating wave in rings of unidirectionally 

coupled Lorenz oscillators was presented by E.Sanchez, D.Pazo, M.A.Matias [77] in 2006. 

They studied a system of three coupled oscillators, in which they observed an occurrence of 

both the periodic (PRW) and chaotic (CRW) rotating wave. In the range of the PRW, the 

largest Lyapunov exponent is equal to zero and other exponents are negative. The CRW range 

is divided into two areas due to the Lyapunov exponents: the first one was characterized by 

the positive largest Lyapunov exponent, two zero and a rest of the negative Lyapunov 

exponents, whereas in the second area, the two largest Lyapunov exponents had positive 

values, the next one was equal to zero and the others were negative exponents. For the PRW 

and the CRW, they observed a characteristic phase shift between each of the oscillators. The 

graphs of time waveforms for the next, adjacent oscillators are phase-shifted by 2π/N (where 

N is a number of oscillators). 

 In 2010, P.Perlikowski et al. [78] presented the complex dynamics in a ring of 

unidirectionally coupled Duffing oscillators. In one part of the work, the behavior of three 

unidirectionally coupled Duffing oscillators is described. With an increase in the coupling 

parameter, the presence of the PRW, the quasi-periodic rotating wave (QRW) and the CRW 

can be observed. Similarly to papers [76,77], the PRW occurs as a result of the Hopf 
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bifurcation, the QRW arises from the Neimark-Sacker bifurcation (a 2D torus appears). 

A further increase in the coupling parameter causes a transition to chaotic behavior – the 

CRW arises. For the PRW, the resulting waveforms for timing graphs are shifted in phase 

with each other by a fixed value. However, the Neimark-Sacker bifurcation introduced a small 

symmetry break into the system – a value of the phase shift for the next oscillators was 

slightly different. 

 It should be noted that these works describe systems of identical oscillators, which can 

be realized only in numerical simulations. However, a number of papers describing the 

behavior of a real circuit, in which each oscillator has slightly different parameters (mismatch 

of parameters) is significantly smaller [79,80,81]. Therefore, identical rings of oscillators and 

real rings of slightly non-identical oscillators are examined in this dissertation. 

 

1.4. Systems with time delay 

 

 The phenomenon of time delay is one of the most important issues that occur during 

the analysis of dynamical systems. The research conducted to this point suggests that the 

dynamics of a system incorporating time delay can be very complicated and can have 

a number of interesting features. In addition, it is demonstrated that time delay in dynamical 

systems in one of the most effective methods of chaos control (or anti-control), because time 

delay can be easily controlled and implemented in real applications. 

 Already in 1970’s it was shown that introducing time delay to the simplest, one-

dimensional oscillator could lead to very complicated, chaotic behavior (Mackey and Glass 

[82], Farmer [83], Lu and He [84]). In the subsequent years, A.Maccari [85] presented an 

effect of time delay and feedback gain on the peak amplitude of the fundamental resonance in 

the nonlinear Van der Pol oscillator. He showed that choosing the appropriate value of time 

delay and feedback gain could reduce the peak amplitude and suppress the quasi-periodic 

motion. 

 In 2002, P.Yu, Y.Yuan, J.Xu [86] presented a nonlinear oscillator with time delay 

introduced for the linear and non-linear part of the equation in the feedback loop. By changing 

the value of time delay, they observed a rich dynamical behavior of the system. They showed 

a presence of periodic, quasi-periodic and chaotic motion. They concluded that the feedback 

value of the nonlinear part had to be different from zero to obtain a chaotic solution. 

Furthermore, they noted that only the positive feedback value caused bifurcation from one 
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state to another. They suggested that a positive feedback was necessary in order to obtain 

a chaotic solution. 

 In 2003, J.Xu and K.W.Chung [87] presented a Van der Pol-Duffing oscillator 

with time delay introduced for the linear and non-linear part of the equation in the feedback 

loop. They got two ways of a transition to solve the chaotic solution – through a period-

doubling bifurcation and a torus decay bifurcation. They have recognized that time delay 

plays a very important role in analyzing the behavior of dynamical systems. A proper 

selection of time delay suppresses effectively vibrations. They have found that time delay can 

be used as a simple “switch” to control the behavior of the system. The use of time delay 

allows one also to generate chaotic solutions. 

 In this dissertation, a nonlinear Duffing oscillator with time delay introduced in the 

feedback loop is examined, and in particular, a scenario of a transition to chaotic solution. 

 

1.5. Subject of the work – oscillators under analysis 

 

 The subject of this study is an analysis of the classical Duffing oscillator in two 

configurations: 

1. as a closed ring of unidirectionally coupling oscillators (Fig.1.2). 

2. as a system with time delay (Fig.1.3). 

 

 

Fig.1.2. Ring of seven, unidirectionally coupled nonlinear Duffing oscillators. 

 



11 | P a g e  

 

 
Fig.1.3. Duffing oscillator with time delay. 

 

A nonlinear damped Duffing oscillator (without force) is described by the equation: 

 

/0 + 2/3 + 4/ + 5/6 = 0          (1.1) 

 

where: a, b, c are parameters. If the parameter a is a positive number, we are talking about the 

so-called single-well Duffing oscillator (one position of equilibrium). Otherwise (a<0), we 

have to deal with the so-called double-well Duffing oscillator (three possible positions of 

equilibrium). In this work, a single-well version (a>0) has been subjected to analysis. 

 Using the Duffing equation, many mechanical and physical systems and processes can 

be modeled, for example: 

- mathematical and physical (inverted) pendulum [24] (Fig. 1.4), 

 

 
Fig.1.4. Mathematical (a) and physical (inverted) (b) pendulum. 
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- vibrations of the buckled beam under the action of axial force [25, 26] (Fig. 1.5), 

 
Fig.1.5. Buckled beam under the action of axial force. 

 

- oscillator with a nonlinear spring – a Duffing oscillator [27] (Fig. 1.6), 

 

 
Fig.1.6. Oscillator with a nonlinear spring – a Duffing oscillator. 

 

- RLC circuits with nonlinear inductors [28] (Fig. 1.7). 

 

 
Fig.1.7. RLC circuit with nonlinear inductors. 
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 Coupled oscillators in a ring can be described by following general equation: 

 

/07 + 2/37 + 4/7 + 5/7 6 = 8�/79� − /7�        (1.2) 

 

where: 

σ - coefficient of the unidirectionally coupling,  j=1,…,N. 

For the purpose of the numerical and experimental analysis, the number N=7 of oscillators 

was adopted, because a wide and interesting from the scientific point of view spectrum of 

dynamic behavior of the analyzed system was observed for this value. 

 On the other hand, a single Duffing oscillator with time delay is described the 

following equation: 

 

/0 ��� + 2/3 ��� + 4/��� + 5/���6 = :[/�� − <� − /���]      (1.3) 

 

where: 

τ – time delay parameter,  

p – delay gain. 

 

1.6. Aims and thesis 

 

 The main aim of this dissertation is to show a dynamical analogy between a ring of 

unidirectionally coupled oscillators and systems with time delay, mainly in the context 

of similarity of bifurcation scenarios leading from steady-state through periodic motion to 

hyper-chaos. A particular emphasis is placed on an experimental verification of the numerical 

results and an identification of the mechanism of destabilization of the steady-state and 

periodic solution as a result of an increase in the coupling parameter or a magnitude of time 

delay. Furthermore, the aim of this dissertation also includes an explanation of the mechanism 

of formation and stabilization of a 3D torus. 
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Specific objectives of the work: 

1. Numerical modeling of nonlinear Duffing oscillators unidirectionally coupled in a ring 

(Eq. (1.2)) and single Duffing oscillators with a time delay loop (Eq. (1.3)). 

2. Stability analysis of stationary states of the investigated array of oscillators as 

a function of the increasing coupling parameter. 

3. Analysis of the results and the solutions observed in the numerical analysis, in 

particular the expected three-frequency quasi-periodic solution. 

4. Design and construction of the experimental ring, optimized on the basis of the 

numerical simulations. 

5. Experimental confirmation of the numerical results and observations. 

6. Description of the mechanism of vibration excitation in closed arrays 

of unidirectionally coupled oscillators. 

7.  Identification of the stabilization mechanism of the three-frequency torus. 

8. Introduction of a feedback with time delay for the analyzed oscillator. 

9. Numerical identification of analogies and differences between the ring 

of unidirectionally coupled oscillators and the system with time delay. 

10. Compilation of the results, conclusions and a text of the dissertation. 

 

Work thesis: 

 A three-frequency quasi-periodic solution in the ring of unidirectionally coupled 

oscillators can occur and there are many analogies between the dynamic behavior of such 

systems and oscillators with a delayed feedback. 
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CHAPTER 2 

 

 

RING OF SEVEN UNIDIRECTIONALLY COUPLED NONLINEAR 

DUFFING OSCILLATORS  – STABILITY ANALYSIS OF  

STATIONARY STATES 

 

 To analyze the steady states (critical points) of unidirectionally coupled Duffing 

oscillators in a ring (1.2), a conversion of variables i.e., � = �, � = �� , was applied. Also, 

a small difference in the parameters of individual oscillators (mismatch of parameters), 

inevitable in real systems, was taken into account. As a result, the obtained system of first 

order differential equations takes the general form: 

 

��� = ��  

��� = −	�� − 
�� − ���� + �(������� − �����)       (2.1) 

 

where j = 1,…,7. The coefficients κzj and κyj model a possible mismatch of coupling terms in 

the real circuit. For identical items, we have nominal values of parameters: aj = a, bj = b, cj = c 

and κzj = κyj = 1. The overall coupling coefficient σ is considered as the control parameter. 

When node systems (2.1) are uncoupled (σ = 0), then the solution to Eq. (2.1) tends to a stable 

fixed point U(0,0), i.e., xj = 0, yj = 0, in the phase space due to the presence of damping (c>0) 

and a lack of forcing. Then, free damped vibrations (oscillation death) can be observed. The 

coupled oscillators also have only one critical point U(0,…,0) in the fourteen-dimensional 

phase space of system (2.1). In order to evaluate its stability, such an analysis for the 

linearized system around the critical point is performed. 

 In the case of identical coupled oscillators, Eq. (2.1) can be written in the following 

matrix form: 

 

��� = ��� + ����� + �����          (2.2) 

 

where: 

�� ∈ ��	(� = 1,2, … ,#), 
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A – Jacobi matrix of the linear part, 

B(uj) – matrix of the nonlinear part, 

K: R2→R2 – output function (coupling matrix) of each oscillator variables that is used in the 

coupling. 

 Thus, individual vectors and matrices in the Eq. (2.2) are described by following 

formulas: 

 

�� = $����%   ��� = &������'   ���� = $��������% 

 

� = ( 0 1
−(
 + �) −	* ����� = ( 0 0

−��� 0*  � = +0 0
� 0, 

 

2.1. Stability of steady states in a circuit of identical oscillators 

 

 Using [78] in order to analyze the stability of stationary states, the ring of seven 

nonlinear Duffing oscillators can be represented in the notation of a block matrix: 

 

-� = (.⊗ �)- + 0(-) + (1⊗ �)-                (2.1.1) 

 

where ⊗ is a direct (Kronecker) product of two matrices, u = [u1, u2, u3, u4, u5, u6, u7]
T, 

D(u) = diag[B(u1), …, B(u7)], I is the 7×7 identity matrix, G is the 7×7 connectivity matrix 

representing the topology of connections between the ring nodes. For the unidirectional ring 

structure, the matrix G has the following structure: 

1 =

23
33
33
4010
00
0
0

0
01
00
0
0

0
00
10
0
0

0
00
01
0
0

0
00
00
1
0

0
00
00
0
1

1
00
00
0
05
66
66
67
 

 

Equation (2.1.1) has a symmetric equilibrium point u = [0, 0, 0, 0, 0, 0, 0]T. 

By linearization of Eq. (2.1.1), we obtain a variational equation of the form: 
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8-� = [. ⊗ � + 1⊗�]8-                  (2.1.2) 

 

where: δu = [δu1, δu2, δu3, δu4, δu5, δu6, δu7]
T. 

  

After diagonalization of variational Eq. (2.1.2) seven independent equations appear 

[88,89]: 

 

8��� = �� + ;���8�� ,										� = 1,… ,7,                 (2.1.3) 

 

where δuj are variational coordinates and γj are eigenvalues of the connectivity matrix G, 

which can be expressed as: 

 

;� = =>�?�/A,										� = 1,… ,7.                         (2.1.4) 

 

After some transformations, the stability analysis reduces to the characteristic equation: 

 

C(D, �) ≔ det�DI − � − ;��� = 0,										� = 1,… ,7.                         (2.1.5) 

 

Substituting Eq. (2.1.4) into Eq. (2.1.5), we obtain: 

 

C(D, �) ≔ det�DI − � − =>�?�/A�� = 0,										� = 1, … ,7.              (2.1.6) 

 

Solving Eq. (2.1.6), the eigenvalues of the Jacobi matrix can be expressed by the formulas: 

 

D�,�(�) = − J
� ±L$J�%

� − 
 − �(1 − =MNOP
Q ),										� = 1, … ,7.                        (2.1.7) 

 

 For the analyzed, ideal system (with the same parameters in all subsystems) of seven 

unidirectionally coupled nonlinear Duffing oscillators, the dimensionless parameters are as 

follows: c = 0.03162; a = 1; and σ  is the control parameter of bifurcation. A detailed 

description of these parameters is given in Chapter 4.  

 The calculations of the matrix eigenvalues (Fig. 2.1.1, 2.1.2, 2.2.1, 2.2.2) were 

performed with Wolfram Mathematica 8 and the graphs were drawn up in OriginPro 8. 
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Fig. 2.1.1. Graph of the real eigenvalues Re λ of linearized system (2.1.2) versus the coupling parameter σ for a 

ring of seven identical Duffing oscillators. 
 

 
Fig. 2.1.2. Eigenvalues of linearized system (2.1.2) on the complex plane (the positive imaginary parts Im λ 

versus the real parts Re λ) for a ring of seven identical Duffing oscillators with different values of the coupling 
parameter σ. 
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 In Fig. 2.1.1 a dependence of the real eigenvalues Re λ of linearized system (2.1.2) as 

a function of the coupling parameter σ for a ring of seven identical Duffing oscillators is 

shown. In this graph, the critical value of the coupling parameter, for which the first real 

eigenvalue changes its sign to positive, amounts to σ = 0.0332. This means that there is 

a supercritical Hopf bifurcation – a transition of the system from the critical point to the limit 

cycle occurs. The graph shows the curves representing fourteen Re λ, however, only seven of 

them are visible because each curve is drawn twice. The same values of real parts overlap the 

following pairs of oscillators: j = 1 and j = 6, j = 2 and j = 5, j = 3 and j = 4. For the oscillator 

j = 7, the values of real parts are fixed and the same for the positive and negative real part. 

 In Fig. 2.1.2, eigenvalues of linearized system (2.1.2) on the complex plane for five 

different values of the coupling parameter (σ: 0.03; 0.06; 0.10; 0.20; 0.40 are depicted. Only 

positive values of the imaginary parts are drawn in order to illustrate better the results. 

Negative values of the imaginary part are a symmetric reflection with respect to the Im λ = 0 

points shown in the described graph. In Fig. 2.1.2, a constant value for each of the parameter 

σ can be seen. Drawing a vertical broken line through this constant value, the symmetry of the 

remaining points with respect to this line can be observed. Combining the received points for 

each adopted value of the parameter, we obtain a characteristic ellipse. 

 

2.2. Stability of steady states in a circuit of real oscillators 

 

 In next Chapters (3 and 4), a real system in which there is no perfect symmetry 

between the oscillators is examined. Values of the parameters c and a and a value of the 

dimensionless coupling between oscillators - κzj, κyj - are different for each of the oscillator. 

Therefore, a stability analysis was also performed for the real system. The real parameters 

have been reduced to a dimensionless form (a transition to the dimensionless form and all the 

indications and explanations of variables – see Chapter 4) yielding: 

 

S1: 	� = 0.031667; 
� = 1.0000;	�X� = 0.987; ��� = 0.984, 
S2: 	� = 0.031379; 
� = 1.0065;	�X� = 0.993; ��� = 0.992, 
S3: 	� = 0.031213; 
� = 1.0148;	�X� = 1.003; ��� = 1.004, 
S4: 	] = 0.031533; 
] = 0.9948;	�X] = 0.982; ��] = 0.982, 
S5: 	^ = 0.032047; 
^ = 1.0393;	�X^ = 1.021; ��^ = 1.023, 
S6: 	_ = 0.031829; 
_ = 1.0137;	�X_ = 0.995; ��_ = 0.998, 
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S7: 	A = 0.031490; 
A = 0.9953;	�XA = 0.976; ��A = 0.976. 
 

 Using Eq. (2.1.2) for the ring of seven real nonlinear Duffing oscillators, we have: 

 

8-� = `. ⊗ �� + 1⊗��a8-,										� = 1,… ,7,               (2.2.1) 

 

where: 

 

�� = ( 0 1
−�
� + � ∗ ���� −	�* 

 

�� = ( 0 0
� ∗ �X� 0* 

 

 In calculation of the eigenvalues of Eq. (2.2.1), the following graphs were obtained: 

 

 
Fig. 2.2.1. Graph of the real eigenvalues Re λ of linearized system (2.2.1) versus the coupling parameter σ for a 

ring of seven real Duffing oscillators. 
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Fig. 2.2.2. Eigenvalues of linearized system (2.2.1) on the complex plane (the positive imaginary parts Im λ 
versus the real parts Re λ) for a ring of seven real Duffing oscillators with different values of the coupling 

parameter σ. 
 

 

 In Fig. 2.2.1, a dependence of the real eigenvalues Re λ of linearized system (2.2.1) as 

a function of the coupling parameter σ for a ring of seven real Duffing oscillators is shown. 

As a result of the occurrence of two different parameters in the coupling term for real 

oscillators (κzj, κyj – detailed explanation in Chapter 4), the expressions σ*κzj and σ*κyj were 

introduced into the matrices Aj and Kj (Eq. (2.2.1)). This makes it possible to compare Fig. 

2.2.1 with Fig. 2.1.1 (σ), and take into account different coupling parameters for each of the 

oscillators (κzj, κyj). In contrast to the identical system (Fig. 2.1.1), the critical value of the 

coupling parameter, for which one of the real part changes to a positive sign, is σ = 0.0365. 

For this value, the Hopf bifurcation occurs – a transition from the critical point to the limit 

cycle takes place. Similarly, as shown in Fig. 2.1.1, only seven curves can be seen because for 

pairs of oscillators j = 1 and j = 6, j = 2 and j = 5, j = 3 and j=4, we get the same values of real 

parts. For the oscillator j = 7, the values of the real parts are fixed and the same for the 

positive and negative real part.  

 In Fig. 2.2.2, eigenvalues of linearized system (2.2.1) on the complex plane for five 

different values of the coupling parameter (σ: 0.3; 0.06; 0.10; 0.20; 0.40) are demonstrated by 
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analogy to Fig. 2.1.2. Negative values of the imaginary part are also a symmetric reflection 

with respect to the Im λ = 0 points shown on the described graph. One can also see almost 

constant value of each of the parameter σ – for each σ, this value is slightly different. The 

values of these differences are not larger than 0.001. Therefore, despite a slight symmetry 

breaking, we obtain a characteristic ellipse combining the remaining points for each of the 

parameter σ. 
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CHAPTER 3 

 

 

NUMERICAL ANALYSIS OF A RING OF SEVEN UNIDIRECTIONALLY 

COUPLED DUFFING OSCILLATORS 

 

This chapter presents results of the numerical analysis of a ring of seven identical and 

also real, unidirectionally coupled, nonlinear Duffing oscillators (Eq. (2.1)). In both cases, an 

impact of changes in a value of the coupling coefficient on the dynamics of the test system 

was analyzed. In addition, a comparison of the results of the numerical simulations for 

identical and real oscillators was performed. 

The obtained results are represented by: 

- bifurcation diagrams (Figs. 3.1.1, 3.1.3), 

- phase portraits (Figs. 3.1.7, 3.1.9, 3.1.11, 3.1.13, 3.1.15, 3.1.17, 3.1.19, 3.1.21, 3.1.23, 

3.1.25, 3.1.27), 

- Poincaré maps (Figs. 3.1.8, 3.1.10, 3.1.12, 3.1.14, 3.1.16, 3.1.18, 3.1.20, 3.1.22, 

3.1.24, 3.1.26, 3.1.28), 

- Lyapunov exponents graphs (3.1.2, 3.1.4-3.1.6), 

- FFT spectrum analysis (3.1.29-3.1.37). 

 According to Eq. (2.1), a full description of the ring of seven identical, 

unidirectionally coupled, nonlinear Duffing oscillators can be represented by fourteen first-

order differential equations: 

 

��� = �� 

��� = −��� − ��� − 	��

 + �(�� − ��) 

��� = �� 

��� = −��� − ��� − 	��

 + �(�� − ��) 

��
 = �
 

��
 = −��
 − ��
 − 	�


 + �(�� − �
) 

��� = ��                                           (3.1) 

��� = −��� − ��� − 	��

 + �(�
 − ��) 

��� = �� 

��� = −��� − ��� − 	��

 + �(�� − ��) 
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��� = �� 

��� = −��� − ��� − 	��

 + �(�� − ��) 

��� = �� 

��� = −��� − ��� − 	��

 + �(�� − ��) 

 

where the parameters are: 

 

c = 0.03162;  a = 1.00;  b = 10; 

 

and σ = Rs*k is a bifurcation parameter, where: Rs ∈ <0÷99900> [Ω], k = 0.00001 [1/Ω]. 

 Parameter values were selected in such a way as to correspond to the values of 

elements (resistors and capacitors) of the identical electrical system (see Chapter 4). 

 The circuit of seven real, unidirectionally coupled, nonlinear Duffing oscillators can be 

represented by the following equations: 

 

��� = �� 

��� = −���� − ���� − 	���

 + �(����� − �����) 

��� = �� 

��� = −���� − ���� − 	���

 + �(����� − �����) 

��
 = �
 

��
 = −�
�
 − �
�
 − 	
�


 + �(��
�� − ��
�
) 

��� = ��                                           (3.2) 

��� = −���� − ���� − 	���

 + �(����
 − �����) 

��� = �� 

��� = −���� − ���� − 	���

 + �(����� − �����) 

��� = �� 

��� = −���� − ���� − 	���

 + �(����� − �����) 

��� = �� 

��� = −���� − ���� − 	���

 + �(����� − �����) 

 

where the values of each parameter are: 

 

�� = 0.031667;								�� = 1.0000;									� = 9.940; 
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�� = 0.031379;								�� = 1.0065;	 								� = 10.015; 

�
 = 0.031213;								�
 = 1.0148;									
 = 10.107; 

�� = 0.031533;								�� = 0.9948;									� = 9.898; 

�� = 0.032047;								�� = 1.0393;	 								� = 10.320; 

�� = 0.031829;								�� = 1.0137;									� = 10.056; 

�� = 0.031490;								�� = 0.9953;									� = 9.853; 

 

�$� = 0.987;									��� = 0.984; 

�$� = 0.993;									��� = 0.992, 

�$
 = 1.003;									��
 = 1.004, 

�$� = 0.982; 									��� = 0.982, 

�$� = 1.021;									��� = 1.023, 

�$� = 0.995;									��� = 0.998, 

�$� = 0.976;									��� = 0.976. 

 

The above dimensionless parameters correspond to the values of elements (resistors and 

capacitors) of the real electrical circuit (see Chapter 4). 

 

3.1. Numerical results 

 

 All bifurcation diagrams, phase portraits and Poincaré maps were made with the 

Borland-Delphi software, whereas Lyapunov exponents were calculated using the C++ 

software. These results are presented below. 

I hereby wish to thank my colleagues from the Division of Dynamics, Lodz University of 

Technology – Dr. Przemysław Perlikowski and Dr. Artur Dąbrowski for their assistance in the 

implementation of the programs for the purposes of this dissertation. 
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Fig. 3.1.1. Bifurcation diagram of the variable x1 versus the coupling parameter σ for a circuit of seven identical 
Duffing oscillators (Eq. (3.1)). 

 

 
Fig. 3.1.2. Graph of the five largest Lyapunov exponents λ versus the coupling parameter σ for a circuit of seven 

identical Duffing oscillators (Eq. (3.1)). 
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Fig. 3.1.3. Bifurcation diagram of the variable x1 versus the coupling parameter σ for a circuit of seven real 

Duffing oscillators (Eq. (3.2)). 

 

Fig. 3.1.4. Graph of the five largest Lyapunov exponents λ versus the coupling parameter σ for a circuit of seven 
real Duffing oscillators (Eq. (3.2)). 



28 | P a g e  

 

 
Fig. 3.1.5. Detailed graph of the largest Lyapunov exponents λ versus the coupling parameter σ for a circuit of 

seven identical Duffing oscillators (Eq. (3.1)). 

 

Fig. 3.1.6. Detailed graph of the largest Lyapunov exponents λ versus the coupling parameter σ for a circuit of 
seven real Duffing oscillators (Eq. (3.2)). 
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 After analyzing the bifurcation diagram (Fig. 3.1.1) and the graph of largest Lyapunov 

exponents (Fig. 3.1.2) for a circuit of seven identical Duffing oscillators, it can be concluded 

that the first Hopf bifurcation occurs for the parameter σ1 = 0.0332. As a result, the first 

frequency of oscillation appears and a transition from the stable equilibrium position to the 

limit cycle is observed in the test system under consideration. Then, all oscillators in the ring 

start to vibrate harmonically and a periodic rotating wave (PRW - see Subsection 1.3) is 

formed. The largest Lyapunov exponent is equal to zero. Such a harmonic solution takes place 

in a small range of the coupling coefficient – σ ∈ <0.0332÷0.0336>, i.e., between σ1 and σ2 in 

Fig. 3.1.2. For σ > 0.0336, the second disproportionate frequency appears as a result of the 

next Hopf-type bifurcation. In this interval, two largest Lyapunov exponents are equal to zero. 

The transition of the system from a periodic to quasi-periodic solution leads to the appearance 

of a 2D torus, which dominates in a wide range of the coupling parameter - 

σ ∈ <0.0337÷0.0435>. A further increase in the coupling parameter, over the value σ3, causes 

an emergence of the subsequent, third Hopf-type bifurcation. The third disproportionate 

frequency appears and three largest Lyapunov exponents have values equal to zero, i.e., 

a transition from the 2D torus to a three-frequency solution – a 3D torus (Fig. 3.1.5) – takes 

place. The range of the 3D torus occurrence is σ ∈ <0.0436÷0.0477>. In addition, for the 

coupling parameter σ = 0.0458, a period-doubling bifurcation in the 3D torus appears. For 

σ4 = 0.0477, the largest Lyapunov exponent reaches a positive value and the system becomes 

to behave chaotically. Chaos appears on the 2D torus, because the next two largest Lyapunov 

exponents are equal to zero. Chaotic behavior occurs for the coupling parameter 

σ ∈ <0.0478÷0.0486>. For the coupling parameter σ > 0.0486, the second largest Lyapunov 

exponent reaches a positive value and a transition from chaotic to hyper-chaotic behavior is 

observed. Hyper-chaotic behavior also occurs on the 2D torus, because the next two largest 

Lyapunov exponents are equal to zero.  

 Comparing the bifurcation diagram (Fig. 3.1.3) and the graph of largest Lyapunov 

exponents (Fig. 3.1.4) for a circuit of seven real Duffing oscillators with the bifurcation 

diagram (Fig. 3.1.1) and the graph of largest Lyapunov exponents (Fig. 3.1.2) for a circuit of 

seven identical Duffing oscillators, it can be seen that the first Hopf bifurcation occurs for the 

coupling parameter value slightly larger than for the identical system. The first frequency of 

oscillation occurs for the coupling parameter σ1 = 0.0365. Similarly to the identical system, 

the largest Lyapunov exponent is equal to zero, so one can observe a periodic solution. 

Periodic motion also occurs in a narrow range of the coupling parameter - 
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σ ∈ <0.0365÷0.0370>. An increase in the coupling parameter over σ2 = 0.0371 leads to the 

second Hopf-type bifurcation. A second disproportionate frequency appears and the two 

largest Lyapunov exponents are equal to zero. Similarly to the identical system, as a result of 

the system transition from the periodic solution in the quasi-periodic one, a 2D torus appears. 

The 2D torus occurs for the coupling parameter σ ∈ <0.0371÷0.0495>. For σ3 = 0.0496, the 

third disproportionate frequency appears, as a result of the third Hopf-type bifurcation. The 

three largest Lyapunov exponents assume the value of zero, which means that the three-

frequency solution (a 3D torus in Fig. 3.1.6) is stable. However, in contrast to the ideal 

system, a 3D torus does not occur until the system reaches a chaotic solution. The three-

frequency solution exists in the range of the coupling parameter σ ∈ <0.0496÷0.0502>. 

A further increase in the coupling parameter leads to a reverse Hopf bifurcation and 

a sequence of period-doubling bifurcations in the range σ ∈ <0.0508÷0.0512>. They are 

period-doubling bifurcations of the 2D torus, because the value of the third largest Lyapunov 

exponent is negative. For σ4 = 0.0513, the largest Lyapunov exponent reaches a positive 

value. Then, a transition from the quasi-periodic solution to the chaotic one takes place. As 

for the ideal system, this is a chaotic behavior on the 2D torus, because values of two 

consecutive Lyapunov exponents are equal to zero. A further increase in the coupling 

parameter leads to an increase in the value of the second largest Lyapunov exponent. This 

exponent reaches a positive value for σ > 0.0521, resulting in a transition from chaotic to 

hyper-chaotic behavior. 

 For each of the solutions, i.e., the fixed point, the limit cycle, the 2D torus, the 3D 

torus, the period-doubling (the real system) and chaotic behavior (hyper-chaotic), phase 

portraits and Poincaré maps (Fig. 3.1.7 – 3.1.26) were generated. In addition, an FFT 

spectrum analysis was performed for each of the solution (Fig. 3.1.27 – 3.1.35). 

 Graphs for the following values of the coupling parameter σ: 0.0330; 0.0332; 0.0430; 

0.0440; 0.0500 were prepared for a circuit of seven identical Duffing oscillators. 

 The following values of the coupling parameter σ: 0.0360; 0.0368; 0.0490; 0.0500; 

0.0540 were selected for a circuit of seven real Duffing oscillators. 
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Fig. 3.1.7. Phase portrait for the coupling parameter σ=0.0330 – a circuit of seven identical Duffing oscillators. 

 
 

 

Fig. 3.1.8. Phase portrait for the coupling parameter σ=0.0360 – a circuit of seven real Duffing oscillators. 
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Fig. 3.1.9. Phase portrait for the coupling parameter σ=0.0332 – a circuit of seven identical Duffing oscillators. 

 

Fig. 3.1.10. Poincaré map for the coupling parameter σ=0.0332 – a circuit of seven identical Duffing oscillators. 
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Fig. 3.1.11. Phase portrait for the coupling parameter σ=0.0368 – a circuit of seven real Duffing oscillators. 

 

Fig. 3.1.12. Poincaré map for the coupling parameter σ=0.0368 – a circuit of seven real Duffing oscillators. 
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Fig. 3.1.13. Phase portrait for the coupling parameter σ=0.0430 – a circuit of seven identical Duffing oscillators. 

 

Fig. 3.1.14. Poincaré map for the coupling parameter σ=0.0430 – a circuit of seven identical Duffing oscillators. 
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Fig. 3.1.15. Phase portrait for the coupling parameter σ=0.0490 – a circuit of seven real Duffing oscillators. 

 

Fig. 3.1.16. Poincaré map for the coupling parameter σ=0.0490 – a circuit of seven real Duffing oscillators. 
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Fig. 3.1.17. Phase portrait for the coupling parameter σ=0.0440 – a circuit of seven identical Duffing oscillators. 

 

Fig. 3.1.18. Poincaré map for the coupling parameter σ=0.0440 – a circuit of seven identical Duffing oscillators. 
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Fig. 3.1.19. Phase portrait for the coupling parameter σ=0.0500 – a circuit of seven real Duffing oscillators. 

 
 

 

Fig. 3.1.20. Poincaré map for the coupling parameter σ=0.0500 – a circuit of seven real Duffing oscillators. 
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Fig. 3.1.21. Phase portrait for the coupling parameter σ=0.0505 – a circuit of seven real Duffing oscillators. 
 

 

Fig. 3.1.22. Poincaré map for the coupling parameter σ=0.0505 – a circuit of seven real Duffing oscillators. 
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Fig. 3.1.23. Phase portrait for the coupling parameter σ=0.0500 – a circuit of seven identical Duffing oscillators. 

 

Fig. 3.1.24. Poincaré map for the coupling parameter σ=0.0500 – a circuit of seven identical Duffing oscillators. 
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Fig. 3.1.25. Phase portrait for the coupling parameter σ=0.0540 – a circuit of seven real Duffing oscillators. 

 

Fig. 3.1.26. Poincaré map for the coupling parameter σ=0.0540 – a circuit of seven real Duffing oscillators. 
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Fig. 3.1.27. FFT spectrum analysis for the coupling parameter σ=0.0332 – a circuit of seven identical Duffing 
oscillators. 

 

Fig. 3.1.28. FFT spectrum analysis for the coupling parameter σ=0.0368 – a circuit of seven real Duffing 
oscillators. 
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Fig. 3.1.29. FFT spectrum analysis for the coupling parameter σ=0.0430 – a circuit of seven identical Duffing 
oscillators. 

 

Fig. 3.1.30. FFT spectrum analysis for the coupling parameter σ=0.0490 – a circuit of seven real Duffing 
oscillators. 
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Fig. 3.1.31. FFT spectrum analysis for the coupling parameter σ=0.0440 – a circuit of seven identical Duffing 
oscillators. 

 

Fig. 3.1.32. FFT spectrum analysis for the coupling parameter σ=0.0500 – a circuit of seven real Duffing 
oscillators. 
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Fig. 3.1.33. FFT spectrum analysis for the coupling parameter σ=0.0505 – a circuit of seven real Duffing 
oscillators. 

 

Fig. 3.1.34. FFT spectrum analysis for the coupling parameter σ=0.0500 – a circuit of seven identical Duffing 
oscillators. 
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Fig. 3.1.35. FFT spectrum analysis for the coupling parameter σ=0.0540 – a circuit of seven real Duffing 
oscillators. 

 

 

3.2. FFT analysis 

 

 To use a concept of the dimensionless frequency Ω, all the frequencies on the FFT 

spectrum analysis graphs (Fig. 3.1.27-3.1.35) were divided by the value ω0 – the fundamental 

frequency characterizing the ideal circuit (see Chapter 4). 

 Comparing the spectrum of the signal for a circuit of seven identical Duffing 

oscillators with the spectrum of the signal for a circuit of seven real Duffing oscillators, 

identical solutions for the corresponding areas of the bifurcation of the two systems – periodic 

solutions, the 2D torus, the 3D torus, the chaotic solution – can be seen practically. A small 

difference in the values of the received frequencies, resulting from a difference in parameters 

between the identical and real system, is observed. With an increase in the coupling parameter 

σ, the value of the frequency rises. 

 The periodic solution is represented by a single, main frequency Ω0, which is the result 

of the first Hopf bifurcation (Fig. 3.1.27, 3.1.28). The emergence of the second 
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disproportionate frequency (the second Hopf bifurcation) causes an appearance of next 

frequencies around the main frequency (Fig. 3.1.29, 3.1.30). Analyzing the newly formed 

peaks, one can see that the offset between all received peaks and the main peak is constant or 

is a multiplication of this constant (for all the analyzed solutions, a ≈0.00002 difference is 

related to the sampling frequency of the signal). As a result, the first frequency 

is characterized by the peak Ω0 and the second, disproportionate to the first frequency, is 

associated with a fixed value (marked in red on the graphs) of other peaks shifted with respect 

to the peak Ω0: 

 

&' = &( + )*�                   (3.2.1) 

 

where: 

β1 (≈0.00002) – constant offset between the peaks, 

n – number of the analyzed frequency. 

For example, using Fig. 3.1.29 and formula (3.2.1), the frequency marked by Ω2 is: 

 

&� = &( + 2*� = 0.16572 + 2 ∗ 0.00256 = 0.17084 

 

As a result of the third Hopf-type bifurcation, the third frequency Ωnm appears, which is 

disproportionate to the two previous ones (Ω0 and Ωn). Newly formed peaks are also 

characterized by a constant offset relative to the peaks of the first and second frequency (the 

value marked in green on the graphs). The third disproportionate frequency can be described 

by the equation: 

 

&', = &' +-*�                   (3.2.2) 

  

where: 

β2	(≈0.00002)	-	constant offset between the peaks, 

n, m - number of the analyzed frequency. 

Using formula (3.2.2), the frequency Ω21 of Fig. 3.1.32 can be calculated as follows: 

 

&�� = &� + *� = &( + 2*� + *� = 0.16519 + 2 ∗ 0.00300 + 0.00081 = 0.172 
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 For the circuit of seven real Duffing oscillators, a series of period-doubling 

bifurcations of the 2D torus (Fig. 3.1.21, 3.1.22) can be seen, which is not present in the case 

of identical oscillators. In Fig. 3.1.33, newly formed peaks that divide the distance between 

the peaks representing the quasi-periodic solution (2D torus), for example, peaks Ω0 and Ω-4 at 

equal distances, are shown. The distance between peaks Ω0 and Ω-4 is divided by the value of 

Ω-2, and then the distance between peaks Ω0 and Ω-2 is divided by the value of Ω-1. In such 

a way, a series of two period-doubling bifurcations of the 2D torus is manifested on the 

frequency diagram. To calculate the value of a selected frequency, formula (3.2.1) should be 

used. Calculating the frequency Ω1, we obtain: 

 

&� = &( + *� = 0.16547 + 0.00076 = 0.16623 

 

For chaotic (hyper-chaotic) solutions (Fig. 3.1.34, 3.1.35), it is difficult to present 

a description of the dominant frequencies as well as the relationships between them. The 

resulting frequency spectrum is continuous. Therefore, the spectral signal analysis with 

a detailed identification of the peak values was impossible to carry out in this case. 
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CHAPTER 4 

 

 

ANALYSIS OF AN EXPERIMENTAL CIRCUIT OF SEVEN 

UNIDIRECTIONALLY COUPLED DUFFING OSCILLATORS 

 

 

 In this Chapter, a structure of a real circuit, identification of the parameters and 

experimental confirmation of the numerical investigations for a circuit of seven real, 

unidirectionally coupled, nonlinear Duffing oscillators is presented. 

 

4.1. Structure and parameters of the experimental rig 

 

 For the purposes of an experimental analysis of the real circuit, an electrical system 

shown in Fig.4.1.2 was built. This system consists of LM358N operational amplifiers, 

AD663JN multipliers, resistors, capacitors, a 2x10 pin header, jumpers and a power strip. 

The LM358N operational amplifier is a dual low-power amplifier (Fig. 4.1.1). The voltage of 

the amplifier is 3 - 32V and the temperature range 0 - +70°C. 

 

 
Fig. 4.1.1. Scheme of the LM358N operational amplifier. 
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Fig. 4.1.2. Schematic diagram of the electrical circuit of seven real, unidirectionally coupling, nonlinear Duffing 

oscillators. 
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Fig. 4.1.3. Scheme of the AD633JN multiplier. 

 
 

The AD633JN multiplier voltage (Fig. 4.1.3) is ±8 - ±18V, the temperature range: 0 - +70°C. 

The multiplier is characterized by a very high accuracy – the maximum multiplication error is 

2%. The non-linearity in the system is realized by means of this multiplier: 

 

W = (X� − X�)(Y� − Y�)
10V + Z 

 

where: 

X1, X2, Y1, Y2 – inputs, 

W – output, 

Z – input for adding a variety of analog functions. 

 

 The Rs1÷Rs7 resistors, visible in Fig. 4.1.2, implement a coupling between the 

oscillators. They are drawn in a simplified manner. In fact, each of the resistors is composed 

of a group of resistors, a 2x10 pin header and jumpers by means of which it is possible to set 

a coupling between adjacent oscillators (see Fig 4.1.4). 
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Fig. 4.1.4. Detailed scheme of the Rs1÷Rs7 coupling resistors. 

 

 

A wiring diagram for all components on the circuit board is shown in Fig. 4.1.5. 
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Fig. 4.1.5. Printed circuit board (PCB) – wiring components. 

 

 The constructed board is a double-sided PCB, i.e., some paths are routed on the top 

layer (red paths) and the remaining ones on the bottom layer (blue paths). Nominal values of 

resistors and capacitors are as follows: 

 

R1, R2, R38, R39, R75, R76, R112, R113, R149, R150, R186, R187, R223, R224 = 1MΩ; 
R3, R5, R6, R8, R9, R40, R42, R43, R45, R46, R77, R79, R80, R82, R83, R114, R116, R117, 
R119, R120, R151, R153, R154, R156, R157, R188, R190, R191, R193, R194, R225, R227, 
R228, R230, R231 = 100kΩ; 
R4, R7, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R41, R44, R47, R48, R49, R50, R51, 
R52, R53, R54, R55, R56, R78, R81, R84, R85, R86, R87, R88, R89, R90, R91, R92, R93, R115, 
R118, R121, R122, R123, R124, R125, R126, R127, R128, R129, R130, R152, R155, R158, 
R159, R160, R161, R162, R163, R164, R165, R166, R167, R189, R192, R195, R196, R197, 
R198, R199, R200, R201, R202, R203, R204, R226, R229, R232, R233, R234, R235, R236, 
R237, R238, R239, R240, R241, R260, R261, R262, R263, R264, R265, R266 = 10kΩ; 
R20, R21, R22, R23, R24, R25, R26, R27, R28, R57, R58, R59, R60, R61, R62, R63, R64, R65, 
R94, R95, R96, R97, R98, R99, R100, R101, R102, R131, R132, R133, R134, R135, R136, R137, 
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R138, R139, R168, R169, R170, R171, R172, R173, R174, R175, R176, R205, R206, R207, 
R208, R209, R210, R211, R212, R213, R242, R243, R244, R245, R246, R247, R248, R249, 
R250 = 1kΩ; 
R29, R30, R31, R32, R33, R34, R35, R36, R37, R66, R67, R68, R69, R70, R71, R72, R73, R74, 
R103, R104, R105, R106, R107, R108, R109, R110, R111, R140, R141, R142, R143, R144, 
R145, R146, R147, R148, R177, R178, R179, R180, R181, R182, R183, R184, R185, R214, 
R215, R216, R217, R218, R219, R220, R221, R222 = 100Ω; 
C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14 = 10nF. 
 

 In the constructed real circuit, it is impossible to select all the elements having 

identical nominal values like in the ideal circuit. Actual, measured values of resistors and 

capacitors, in the real electric circuit, are as follows: 

 

D1:	R1 = 1006kΩ; 	R2 = 1005kΩ; 	R3 = 99.4kΩ; 	R4 = 10.00kΩ; 	R5 = 100.2kΩ; 
R6 = 100.3kΩ; 	R7 = 9.98kΩ; 	R8 = 100.3kΩ; 	R9 = 100.1kΩ; 	R10 = 10.02kΩ; 
R11, R12, R13, R14, R15, R16, R17, R18, R19 = 10.02kΩ; 
R20, R21, R22, R23, R24, R25, R26, R27, R28 = 998Ω; 
R29, R30, R31, R32, R33, R34, R35, R36, R37 = 100.2Ω; 
C1 = 11.80nF; C2 = 12.06nF; 
 

D2:	R38 = 1007kΩ; 	R39 = 1004kΩ; 	R40 = 99.4kΩ; 	R41 = 9.99kΩ; 	R42 = 100.4kΩ; 
R43 = 100.2kΩ; 	R44 = 10.01kΩ; 	R45 = 100.2kΩ; 	R46 = 100.2kΩ; 	R47 = 10.02kΩ; 
R48, R49, R50, R51, R52, R53, R54, R55, R56 = 10.02kΩ; 
R57, R58, R59, R60, R61, R62, R63, R64, R65 = 998Ω; 
R66, R67, R68, R69, R70, R71, R72, R73, R74 = 100.2Ω; 
C3 = 11.92nF; C4 = 11.79nF; 
 

D3:	R75 = 1006kΩ; 	R76 = 1005kΩ; 	R77 = 99.5kΩ; 	R78 = 9.99kΩ; 	R79 = 100.3kΩ; 
R80 = 100.3kΩ; 	R81 = 10.00kΩ; 	R82 = 100.0kΩ; 	R83 = 100.1kΩ; 	R84 = 10.01kΩ; 
R85, R86, R87, R88, R89, R90, R91, R92, R93 = 10.02kΩ; 
R94, R95, R96, R97, R98, R99, R100, R101, R102 = 998Ω; 
R103, R104, R105, R106, R107, R108, R109, R110, R111 = 100.2Ω; 
C5 = 11.63nF; C6 = 12.01nF; 
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D4:	R112 = 1007kΩ; 	R113 = 1005kΩ; 	R114 = 99.5kΩ; 	R115 = 10.00kΩ;	 
R116 = 100.3kΩ; 	R117 = 100.2kΩ; 	R118 = 10.01kΩ; 	R119 = 100.3kΩ;	 
R120 = 100.2kΩ; 	R121 = 10.00kΩ; 
R122, R123, R124, R125, R126, R127, R128, R129, R130 = 10.02kΩ; 
R131, R132, R133, R134, R135, R136, R137, R138, R139 = 998Ω; 
R140, R141, R142, R143, R144, R145, R146, R147, R148 = 100.2Ω; 
C7 = 11.85nF; C8 = 12.00nF; 
 

D5:	R149 = 1007kΩ; 	R150 = 1005kΩ; 	R151 = 99.2kΩ; 	R152 = 9.99kΩ;	 
R153 = 100.1kΩ; R154 = 100.2kΩ; 	R155 = 10.02kΩ; 	R156 = 100.3kΩ;	 
R157 = 100.3kΩ; R158 = 10.01kΩ; 
R159, R160, R161, R162, R163, R164, R165, R166, R167 = 10.02kΩ; 
R168, R169, R170, R171, R172, R173, R174, R175, R176 = 998Ω; 
R177, R178, R179, R180, R181, R182, R183, R184, R185 = 100.2Ω; 
C9 = 11.66nF; C10 = 11.72nF; 
 

D6:	R186 = 1007kΩ; 	R187 = 1005kΩ; 	R188 = 99.1kΩ; 	R189 = 9.99kΩ; 
R190 = 100.4kΩ; 	R191 = 100.2kΩ; 	R192 = 10.02kΩ; 	R193 = 100.2kΩ; 
R194 = 100.2kΩ; R195 = 10.00kΩ; 
R196, R197, R198, R199, R200, R201, R202, R203, R204 = 10.02kΩ; 
R205, R206, R207, R208, R209, R210, R211, R212, R213 = 998Ω; 
R214, R215, R216, R217, R218, R219, R220, R221, R222 = 100.2Ω; 
C11 = 11.74nF; C12 = 11.91nF; 
 

D7:	R223 = 1006kΩ; 	R224 = 1003kΩ; 	R225 = 99.1kΩ; 	R226 = 10.00kΩ;	 
R227 = 100.4kΩ; 	R228 = 100.4kΩ; 	R229 = 9.99kΩ; 	R230 = 100.3kΩ;	 
R231 = 100.2kΩ; 	R232 = 10.02kΩ; 
R233, R234, R235, R236, R237, R238, R239, R2040, R241 = 10.02kΩ; 
R242, R243, R244, R245, R246, R247, R248, R249, R250 = 998Ω; 
R251, R252, R253, R254, R255, R256, R257, R258, R259 = 100.2Ω; 
C13 = 11.89nF; C14 = 12.05nF. 
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4.2. Mathematical description 

 

 A differential equation was derived on the basis of a scheme of the first coupled 

Duffing oscillator (Fig. 4.2.1). 

 

 
Fig. 4.2.1. Scheme of the first of coupled Duffing oscillators. 

 

For w1, the equation is: 

 

$� = − 1
%1&1 ' $()* − 1

%2&1 ' $�)* − 1
%3&1 ' $)* − 1

%4&1 ' $�)* 																									(4.2.1) 

 

From the characteristics of the AD633JN multiplier results: 

 

$� = $(
100																																																																																																																																										(4.2.2) 

 

For w, we can write a relationship: 

 

$ = − 1
%7&2 '(− %6

%5 $�))*																																																																																																									(4.2.3)	 
 

After integration of Eq. (4.2.3), we obtain: 
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$+ = %6
%7&2%5 $�																																																																																																																															(4.2.4) 

 

A transformation of Eq. (4.2.4) yields: 

 

$� = %7&2%5
%6 $+ 																																																																																																																															(4.2.5) 

 

For w3, we can write a relationship: 

 

$( = − %,1
%10 -− %9

%8 $. − %,1
%260 / = %,1%9

%10%8 $ − %,1
%260 /																																																						(4.2.6) 

 

Substituting Eqs. (4.2.1), (4.2.2) and (4.2.6) into Eq. (4.2.4), we have: 

 

$+ = %6
%7&2%5 (− 1

%1&1 ' -%,1%9
%10%8 $ − %,1

%260 /. )* − 1
%2&1 ' -%7&2%5

%6 $+ . )* 

− 1
%3&1 ' $)* − 1

%4&1 ' $(
100 )*)																																																																																														(4.2.7) 

 

An integration of Eq. (4.2.7) gives: 

 

$0 = %6
%7&2%5 (− %,1%9

%1&1%10%8 $ + %,1
%1&1%260 / − %7&2%5

%2&1%6 $+ − 1
%3&1 $ − 1

100%4&1 $() 

																																																		(4.2.8) 

 

After a transformation of Eq. (4.2.8), a dimensional differential equation was obtained: 

 

$0 + 1
%2&1 $+ + %6

%3%5%7&1&2 $ + %6
100%4%5%7&1&2 $( = %6%,1

%1%5%7%260&1&2 / 

− %6%9%,1
%1%5%7%8%10&1&2 $																																																																																																														(4.2.9) 

 

 For the needs of mathematical analysis such as the calculation of Lyapunov exponents, 

Eq. (4.2.9) has to be written in a dimensionless form after the following transformations: 
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1
12� $0 + 1

%2&112
1

12
$+ + $ + %3

100%4 $( = %3%,1
%1%260 / − %3%9%,1

%1%8%10 $																									(4.2.10) 

 

Dividing Eq. (4.2.10) by V0=1V [90]: 

 

1
3212� $0 + 1

%2&112
1

3212
$+ + 1

32
$ + %3

%4
1

10032
$( = %3%,1

%1%260
1
32

/ − %3%9%,1
%1%8%10

1
32

$ 

(4.2.11) 

 

We finally obtain: 

 

40 + 54+ + 64 + 74( = 89: − 8;4																																																																																													(4.2.12) 

 

where: 

 

12� = %6
%3%5%7&1&2 

5 = 1
%2&112

 

6 = 1 

7 = %3
%4 

89 = %3%,1
%1%260 

8; = %3%9%,1
%1%8%10 

4 = 1
32

$ 

4+ = 1
3212

$+  

40 = 1
3212� $0  

4( = 1
100[3�]32

$( 

: = 1
32

/ 
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 After considering the substitution and the relations between these parameters for the 

real and ideal circuit, Eq. (4.2.12) can be written in the general (2.1) or detailed ((3.1) and 

(3.2)) forms which were considered during the numerical analysis. 

 For the ideal circuit of seven unidirectionally coupled, nonlinear Duffing oscillators, 

the frequency ω0 and the remaining dimensionless parameters are as follows: 

 

ω0
2 = 10000000 [1/s2]; c = 0.03162; a = 1; b = 10; 

σz = σy = σ = Rs*k 

 

where: 

 

> = %3
%1%260 = %3%9

%1%8%10 = 0,00001	[1
?] 

 

k – according to the nominal values of real parameters; 

 

Rs = Rs1 = Rs2 = Rs3 = Rs4 = Rs5 = Rs6 = Rs7 

Rs ∈ <0÷99900> [Ω] 

 

Rs is the resistor controlling the value of the coupling. 

 

 For the real circuit, the frequencies ω0 and the remaining dimensionless parameters are 

as follows: 

 

ω01
2 = 7090665.05 [1/s2]; c1 = 0.031667; a1 = 1.0000; b1 = 9.940; 

ω02
2 = 7137128.00 [1/s2]; c2 = 0.031379; a2 = 1.0065; b2 = 10.015; 

ω03
2 = 7195387.66 [1/s2]; c3 = 0.031213; a3 = 1.0148; b3 = 10.107; 

ω04
2 = 7053587.10 [1/s2]; c4 = 0.031533; a4 = 0.9948; b4 = 9.898; 

ω05
2 = 7369331.41 [1/s2]; c5 = 0.032047; a5 = 1.0393; b5 = 10.320; 

ω06
2 = 7188077.88 [1/s2]; c6 = 0.031829; a6 = 1.0137; b6 = 10.056; 

ω07
2 = 7057167.34 [1/s2]; c7 = 0.031490; a7 = 0.9953; b7 = 9.853; 

 

89@ = 8 ∗ >B@
> = %,C ∗ > ∗ >B@

> = %,C ∗ >B@; 			8;@ = 8 ∗ >D@
> = %,C ∗ > ∗ >D@

> = %,C ∗ >D@; 
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where: 

 

Rs = Rs1 = Rs2 = Rs3 = Rs4 = Rs5 = Rs6 = Rs7 

Rs ∈ <0÷99900> [Ω] 

kz1 = 0.00000987 [1/Ω]; ky1 = 0.00000984 [1/Ω]; 

kz2 = 0.00000993 [1/Ω]; ky2 = 0.00000992 [1/Ω]; 

kz3 = 0.00001003 [1/Ω]; ky3 = 0.00001004 [1/Ω]; 

kz4 = 0.00000982 [1/Ω]; ky4 = 0.00000982 [1/Ω]; 

kz5 = 0.00001021 [1/Ω]; ky5 = 0.00001023 [1/Ω]; 

kz6 = 0.00000995 [1/Ω]; ky6 = 0.00000998 [1/Ω]; 

kz7 = 0.00000976 [1/Ω]; ky7 = 0.00000976 [1/Ω]; 

 

 Moreover, from the above description of the real circuit parameters, the following 

relationships between the dimensionless and dimensional parameters of the coupling result: 

κzj = kzj/k; κyj = kyj/k. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4.3. Experimental investigations

 

 The built circuit (1), an AC (2), a NATIONAL INSTRUMENTS data acquisition card 

(3), the LabVIEW SignalExpress 2010 software and a notebook (4) were used in the 

experimental tests (Fig. 4.3.1).

Fig. 4.3.2. Electrical circuit of

Experimental investigations 

The built circuit (1), an AC (2), a NATIONAL INSTRUMENTS data acquisition card 

(3), the LabVIEW SignalExpress 2010 software and a notebook (4) were used in the 

. 

Fig. 4.3.1. Experimental rig. 

circuit of seven unidirectionally coupled, nonlinear Duffing oscillators
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The built circuit (1), an AC (2), a NATIONAL INSTRUMENTS data acquisition card 

(3), the LabVIEW SignalExpress 2010 software and a notebook (4) were used in the 

 

 

, nonlinear Duffing oscillators. 
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 The test circuit (1) was connected via a power strip (L.ZAS. in Fig. 4.3.2) with an AC 

RIGOL (2). The value of the supply voltage was equal to ±15V. The circuit outputs (x1, y1, y7 

in Fig. 4.3.2) were connected to a data acquisition card (3). The values of the three recorded 

signals (x1, y1, y7) were transmitted in real time to a notebook (4), which saved the results 

through the LabVIEW SignalExpress 2010 software. 

The obtained results are presented in the form: 

- phase portraits (Figs. 4.3.3, 4.3.4, 4.3.6, 4.3.8, 4.3.10, 4.3.12), 

- Poincaré maps (Figs. 4.3.5, 4.3.7, 4.3.9, 4.3.11, 4.3.13), 

- FFT spectrum analysis (Figs. 4.3.14-4.3.18). 

 

 

Fig. 4.3.3. Phase portrait for the coupling parameter σ=0.0480 – a circuit of seven real Duffing oscillators. 
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Fig. 4.3.4. Phase portrait for the coupling parameter σ=0.0490 – a circuit of seven real Duffing oscillators. 

 
Fig. 4.3.5. Poincaré map for the coupling parameter σ=0.0490 – a circuit of seven real Duffing oscillators. 
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Fig. 4.3.6. Phase portrait for the coupling parameter σ=0.0660 – a circuit of seven real Duffing oscillators. 

 
Fig. 4.3.7. Poincaré map for the coupling parameter σ=0.0660 – a circuit of seven real Duffing oscillators. 
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Fig. 4.3.8. Phase portrait for the coupling parameter σ=0.0680 – a circuit of seven real Duffing oscillators. 

 
Fig. 4.3.9. Poincaré map for the coupling parameter σ=0.0680 – a circuit of seven real Duffing oscillators. 
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Fig. 4.3.10. Phase portrait for the coupling parameter σ=0.0700 – a circuit of seven real Duffing oscillators. 

 
Fig. 4.3.11. Poincaré map for the coupling parameter σ=0.0700 – a circuit of seven real Duffing oscillators. 
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Fig. 4.3.12. Phase portrait for the coupling parameter σ=0.0730 – a circuit of seven real Duffing oscillators. 

 
Fig. 4.3.13. Poincaré map for the coupling parameter σ=0.0730 – a circuit of seven real Duffing oscillators. 
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Fig. 4.3.14. FFT spectrum analysis for the coupling parameter σ=0.0490 – a circuit of seven real Duffing 

oscillators. 

 Fig. 4.3.15. FFT spectrum analysis for the coupling parameter σ=0.0660 – a circuit of seven real Duffing 
oscillators. 
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Fig. 4.3.16. FFT spectrum analysis for the coupling parameter σ=0.0680 – a circuit of seven real Duffing 

oscillators. 

 
Fig. 4.3.17. FFT spectrum analysis for the coupling parameter σ=0.0700 – a circuit of seven real Duffing 

oscillators. 
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Fig. 4.3.18. FFT spectrum analysis for the coupling parameter σ=0.0730 – a circuit of seven real Duffing 

oscillators. 
 

 

4.4. FFT analysis of the electrical circuit 

 

 As in the case of the numerical FFT spectral analysis, all frequencies on the FFT 

spectrum graphs (Fig. 4.3.14-4.3.18) were divided by the value of ω04. This made the use of 

the concept of dimensionless frequency Ω of the signal possible. 

 For the coupling parameter σ = 0.0490, the first Hopf-type bifurcation occurs and 

a single main frequency Ω0 appears on the spectrum (see Fig. 4.3.14) representing the limit 

cycle (Fig. 4.3.4, 4.3.5) existing in a relatively narrow range of the coupling parameter. This 

solution is represented by a single, main frequency Ω0 on the FFT spectral analysis graph. 

An increase in the coupling parameter σ > 0.0490 leads to the second Hopf-type bifurcation 

and a 2D torus (Fig. 4.3.6, 4.3.7) appears, which is represented by two disproportionate 

frequencies Ω0 and Ω1. In Fig. 4.3.15, newly formed peaks in addition to the main frequencies 

can be seen. As in the case of the spectral analysis for the numerical circuit, the distance 

between the newly formed peaks and the main peak has a constant value or is a multiplication 

of this constant. As a result, the first frequency is characterized by the peak Ω0 and the second 
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one, disproportionate to the first frequency, is associated with a fixed value (marked in red on 

the graphs) shift of the peaks to the peak Ω0, equal to: 

 

ΩE = Ω2 + nβ�                     (4.4.1) 

 

where: 

β1 (≈0.00002) – constant offset between the peaks, 

n – number of the analyzed frequency. 

For example, the frequency Ω-1 in Fig. 4.3.15 is: 

 

ΩG� = Ω2 − β� = 0.17063 − 0.00384 = 0.16679 

 

 The 2D torus dominates in a wide range of the coupling parameter - 

σ ∈ (0.0490÷0.0680). For the coupling parameter σ = 0.0680, the third Hopf-type bifurcation 

and a transition from the 2D torus to a 3D torus (Fig. 4.3.8, 4.3.9) takes place. The FFT 

spectral analysis graph (Fig. 4.3.16) shows three frequencies disproportionate to each other. 

The first frequency is represented by the peak Ω0. The second frequency – Ωn – is associated 

with a fixed distance (marked in red) relative to the peak Ω0, while the third one – Ωnm – is 

associated with a fixed distance (marked in green) relative to the peaks representing the first 

and second disproportionate frequency. Similarly as for the numerical circuit of oscillators, 

the third disproportionate frequency can be described by the equation: 

 

ΩEH = ΩE + mβ�                   (4.4.2) 

  

where: 

β2	(≈0.00002)	-	constant offset between the peaks, 

n, m - number of the analyzed frequency. 

 Using formula (4.4.2), the frequency Ω-1-1 visible in Fig. 4.3.16 can be calculated as 

follows: 

 

ΩG�G� = ΩG� − β� = Ω2 − β� − β� = 0.17013 − 0.00401 − 0.00108 = 0.16504 
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 The 3D torus is stable up to σ = 0.0700, where a 2D torus appears again but with 

a multiplied period (Fig. 4.3.10, 4.3.11), which can be an effect of the frequency (modes) 

synchronization or a 2D torus period-doubling bifurcation after the reverse Hopf bifurcation. 

In Fig. 4.3.17, as well as in the numerical analysis, the first frequency is characterized by the 

peak Ω0 and the second frequency, disproportionate to the first one, is associated with a fixed 

value (marked in red on the graphs) shift of the peaks to the peak Ω0. To calculate the 

frequency, we use formula (4.4.1), for example: 

 

Ω� = Ω2 + 2 ∗ β� = 0.17113 + 2 ∗ 0.00110 = 0.17333 

 

 For the coupling parameter σ = 0.0730, a transition to a chaotic solution (Fig. 4.3.12, 

4.3.13) characterized by a continuous FFT spectrum graph (see Fig. 4.3.18) occurs. 
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CHAPTER 5 

 

 

NUMERICAL ANALYSIS OF A DUFFING OSCILLATOR 

 WITH A TIME DELAY LOOP 

 

 In this Chapter, a numerical analysis of a single Duffing oscillator with a time delay 

loop is demonstrated. An influence of changes in the value of time delay on the system 

dynamics is analyzed. The numerical simulations carried out are compared with the numerical 

results obtained for the circuit of unidirectionally coupled Duffing oscillators, which was 

presented in Chapter 3. 

 A single Duffing oscillator with a time delay loop is described by Eq. (1.3). 

Substituting � = �, � = �� , a single second-order equation was converted into two first-order 

equations: 

 

��(�) = �(�) 

�� (�) = −��(�) − ��(�) − 
�(�)� + �[�(� − �) − �(�)]      (5.1) 

 

where the parameters are: 

 

c = 0.03162 

a = 1 

b = 10 

p = 30 

 

 Comparing Eq. (5.1) with the generalized equation defining a ring of unidirectionally 

coupled Duffing oscillators (Eq. (2.1)), we can see that the mathematical structure of these 

system is very close to each other. For Eq. (5.1), the time delay is obtained by changing the 

parameter τ, while in Eq. (2.1), the resulting time delay is related to the phase shift between 

neighboring oscillators. Thus, the mechanism of oscillation excitation in both cases is caused 

by a unidirectional feedback which is realized by a structure of connected oscillators or by 

a delay feedback loop.  
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 To compare the results, in both considered cases, i.e., for a ring of coupled oscillators 

and a single Duffing oscillators with a feedback loop, the parameters a, b, c have the same 

values. 

 

5.1. Numerical results 

 

 The numerical investigations of a single Duffing oscillator with a time delay loop were 

carried out with the MATLAB R2009b software. The bifurcation parameter is the time delay 

τ. The obtained results were illustrated by: 

- bifurcation diagrams (Fig. 5.1), 

- phase portraits (Figs. 5.2, 5.4, 5.6, 5.8), 

- Poincaré maps (Figs. 5.3, 5.5, 5.7, 5.9), 

- FFT spectrum analysis (Figs. 5.10-5.13). 

 

 Fig. 5.1. Bifurcation diagram of the displacement x versus the delay parameter τ for a single Duffing oscillator 
with a time delay loop. 
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Fig. 5.2. Phase portrait for the delay parameter τ=0.50 – a single Duffing oscillator with a time delay loop. 
 

Fig. 5.3. Poincaré map for the delay parameter τ=0.50 – a single Duffing oscillator with time delay loop. 



75 | P a g e  

 

Fig. 5.4. Phase portrait for the delay parameter τ=0.72 – a single Duffing oscillator with a time delay loop. 
 

Fig. 5.5. Poincaré map for the delay parameter τ=0.72 – a single Duffing oscillator with a time delay loop. 
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Fig. 5.6. Phase portrait for the delay parameter τ=1.05 – a single Duffing oscillator with a time delay loop. 
 

Fig. 5.7. Poincaré map for the delay parameter τ=1.05 – a single Duffing oscillator with a time delay loop. 
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 Fig. 5.8. Phase portrait for the delay parameter τ=1.40 – a single Duffing oscillator with a time delay loop. 
 

Fig. 5.9. Poincaré map for the delay parameter τ=1.40 – a single Duffing oscillator with a time delay loop. 
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Fig. 5.10. FFT spectrum analysis for the delay parameter τ=0.50 – a single Duffing oscillator with a time delay 
loop. 

Fig. 5.11. FFT spectrum analysis for the delay parameter τ=0.72 – a single Duffing oscillator with a time delay 
loop. 
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Fig. 5.12. FFT spectrum analysis for the delay parameter τ=1.05 – a single Duffing oscillator with a time delay 
loop. 

 

Fig. 5.13. FFT spectrum analysis for the delay parameter τ=1.40 – a single Duffing oscillator with a time delay 
loop. 
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5.2. FFT analysis of the studied system 

 

 For the delay parameter τ > 0.01, the first Hopf bifurcation occurs. The investigated 

system passes from a stationary to periodic solution and the first frequency of oscillation 

appears. In Fig. 5.10, this frequency, as for the ring of seven coupled Duffing oscillators, is 

represented by the single peak Ω0. The limit cycle exists in quite a wide range of the delay 

parameter τ ∈ <0.01÷0.67>. For τ = 0.68, the second Hopf bifurcation takes place. The limit 

cycle transforms into a quasi-periodic solution (Fig. 5.4, 5.5). In Fig. 5.11, this 2D torus is 

presented by two main disproportionate frequencies Ω0, Ω1 and their sub-harmonics. Similarly 

as in Chapters 3 and 4, the newly formed frequencies can be calculated using the formula: 

 

�� = �� + ���           (5.2) 

 

where: 

β1 (≈0.00002) – constant offset between the peaks, 

n – number of the analyzed frequency. 

For example, the frequency Ω2 in Fig. 5.11 is: 

 

�� = �� + 2�� = 3.46133 + 2 ∗ 0.69869 = 4.85871 

 

 For τ = 1.02, a period-doubling bifurcation of the 2D torus (Fig. 5.6, 5.7) takes place. 

Figure 5.12 shows that between the peaks Ω-6, Ω-4, Ω-2, Ω0, Ω2, Ω4, Ω6, representing the 2D 

torus, there are new peaks which divide the distance between the previous ones exactly in 

half. They appear as an effect of the torus period-doubling. For example, according to formula 

(5.2), the frequency Ω-3 in Fig. 5.12 is: 

 

�'� = �� − 3�� = 3.30071 − 3 ∗ 0.24896 = 2.55383 

 

 A further increase in the delay parameter leads to a chaotic solution (Fig. 5.8, 5.19). 

Dominant frequencies cannot be specified on the graph of the FFT spectral analysis (Fig.5.13) 

All peaks are located very close to each other and in a chaotic manner. As a consequence, an 

analysis and interpretation of the results is impracticable. 
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CHAPTER 6 

 

 

ANALYSIS OF THE RESULTS AND CONCLUSIONS 

 

 In Chapters 2-4 of this dissertation, results of the analytical, numerical and 

experimental investigations of a circuit of seven, nominally identical, unidirectionally coupled 

Duffing oscillators were presented. On the other hand, a numerical bifurcation analysis of the 

analogous single Duffing oscillator with a time delay loop was demonstrated in Chapter 5. 

Comments, conclusions and hypotheses, which are described below, have been formulated on 

the basis of these data. 

 The stability analysis of the equilibrium position (critical point) of the linearized 

system of unidirectionally coupled oscillators (Chapter 2) showed that small differences in 

parameters between them had a minimal impact on the instability threshold of the equilibrium 

position. The critical point loses its stability due to the Hopf bifurcation caused by an increase 

in the coupling parameter. This instability results in an appearance of a harmonic rotating 

wave (HRW), which is confirmed in the next chapters. 

 Analyzing the results of the experiment (Chapter 4) and comparing them with the 

results of the numerical simulations (Chapter 3) of a circuit of seven real (non-identical) 

Duffing oscillators, we can see the same scenario of a transition to chaotic behavior. The 

results achieved in the experiment confirm the results of the numerical studies. However, 

some differences in the values of the coupling parameter, for which corresponding 

bifurcations occur, can be observed. For the corresponding bifurcation, the value of the 

coupling parameter in the experimental system (Fig. 4.3.3÷4.3.13) is higher in comparison 

with the numerical model (Fig. 3.1.8, 3.1.11, 3.1.12, 3.1.15, 3.1.16, 3.1.19÷3.1.22, 3.1.25, 

3.1.26). Slight differences also exist in the values of dimensionless frequencies in the FFT 

spectrum analysis graphs (Fig. 4.3.14÷4.3.18 and 3.1.28, 3.1.30, 3.1.32, 3.1.33, 3.1.35). This 

may be an effect of a transition of one (or several) of integrating amplifiers into saturation. As 

a result, the amplifier stops to operate in the linear range. Consequently, in order to 

compensate for the possible saturation effect (for this working amplifier or amplifiers), it was 

necessary to increase a value of the coupling parameter in order to achieve the same system 

dynamics as in the case of the numerical investigations. Besides, slight additional resistance 

formed on the paths connecting various elements in the electric circuit. There was also a slight 
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change in the resistance and capacitance of elements, which formed during soldering 

components on a printed circuit board. 

The demonstrated (in Chapters 3 and 4) results of the experimental and numerical 

investigations indicate that the stable three-frequency quasi-periodicity is a typical 

phenomenon for rings of unidirectionally coupled autonomous Duffing oscillators and it can 

occur in a wide range of system parameters. Definitely, this trend seems to be in contradiction 

to the classical NRT theorem. In agreement with the hypotheses proposed earlier (see Chapter 

1), such an unexpected effect of the 3D torus stability can be explained by some properties of 

the spatiotemporal or rotational symmetry of identical oscillators coupled unidirectionally in 

the ring configuration [72,91,92]. However, the analysis proves that this solution remains, in 

spite of some symmetry breaking caused by the parameter mismatch. On the other hand, its 

relatively considerable influence on the real system dynamics (Figs. 3.1.3, 3.1.4, 3.1.6) in 

comparison with the case of identical oscillators (Figs. 3.1.1, 3.1.2, 3.1.5) is clearly visible. 

This influence manifests with some shift in the sequence of bifurcations in both the cases, 

reducing the range of the 3D torus existence for the disturbed version of the ring under 

consideration. Moreover, a qualitatively different evolution to chaotic motion can be 

observed. In the case of identical nodes, a direct transition from a 3D torus to chaos takes 

place (Fig. 3.1.5), whereas for slightly different parameters of nodes, a return conversion from 

the 3D to 2D quasi-periodic attractor analysis occurs before a transition to chaos via 

consecutive torus period-doubling bifurcations (Fig. 3.1.6).  

The analytic investigations presented in Chapter 1 show that a RW appears 

simultaneously with the first Hopf bifurcation of the equilibrium position U(0,0) in the system 

under consideration. Obviously, this is a PRW, strictly speaking a harmonic rotating wave 

(HRW). The threshold of the coupling strength σ1 required for its occurrence has been 

determined by an eigenvalue analysis of the linearized system (2.1.1) demonstrated in Chapter 

2. This value amounts to σ1 = 0.0332 for identical nodes (see Figs. 2.1.1 and 3.1.1, 3.1.2) and 

σ1 = 0.0365 for real oscillators (see Figs. 2.2.1 and 3.1.3, 3.1.4). According to this analysis, 

the Hopf bifurcation activating the HRW takes place when an increase in the coupling 

coefficient σ causes that the largest real part of eigenvalues (2.1.1) becomes positive. In the 

case of identical nodes, they start to oscillate harmonically (Fig. 6.1) in accordance with the 

solution:  

�� = ���(�	
���),           (6.1) 
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where A is an amplitude and � = 2�/� is a unit phase shift between two neighbor oscillators. 

Substituting this solution into (2.1), with an assumption of the equality of parameters and 

approximating the nonlinear component with the formula ���� = �������� = �����,  
we obtain the characteristic equation  

 

−��� + ���� + � + ��� + ��1 − �!��" = 0.       (6.2) 

 

Separation of Eq. (6.2) into real (6.3a) and imaginary (6.3b) parts: 

 

−��� + � + ��� + �(1 − $%&�) = 0,       (6.3a) 

��� + �&�'� = 0,                    (6.3b) 

 

makes it possible to determine analytically the unknown frequency: 

 

�� = (�� + ��� + �(1 − $%&�),         (6.4) 

 

and amplitude of oscillations: 

 

� = )��&�'�� − ���� − ���(1 − $%&�)���  

             (6.5) 

Including the mismatch of parameters into the considered system, we have N harmonic 

solutions of individual nodes �� = ����(�	
��*) after the first Hopf bifurcation, differing in 

the amplitudes Aj and the phase shifts ϕj (see Fig. 6.4). The characteristic equation for each 

oscillator is now as follows: 

 

−��� + ����� + �� + ����� + �+�[1 − -.*/0.* 1 �!���*!�*/0"] = 0.     (6.6) 

 

Separating real and imaginary components of Eq. (6.6) for all ring items, we obtain 2N 

algebraic equations. They can be written in the general form: 

 

345���, �� , ��" = 0,          (6.7a) 
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378���, �� , ��" = 0.                    (6.7b) 

 

Equation (6.7a-b) together with the formula 

 

∑ ��� − ��!:" = 2�;�<: ,         (6.7c) 

 

allows us to calculate all unknown parameters ω0, Aj and ϕj.  

Consequently, the RW phenomenon still persists for slightly non-identical parameters 

of oscillators also in the case of more complex dynamical responses of the system (quasi-

periodic or chaotic). In Figs. 6.1-6.6, time traces of all seven oscillators representing regular 

responses of ideal (Figs. 6.1-6.3) and real (Figs. 6.4-6.6) circuits, i.e., periodic and two- or 

three-frequency quasi-periodic cases, respectively, can be seen. For identical nodes, we can 

observe an obvious equality of their amplitudes and phase shifts (see Figs. 6.1-6.3) resulting 

from the symmetry of the ring. The parameter mismatch causes some discrepancy of 

amplitudes and phases (Figs. 6.4-6.6) but the RW effect with the dominant frequency ω0 is 

preserved, in spite of more complex periodicity of oscillations, especially clearly visible in 

cases of quasi-periodic motion (see Figs. 6.5, 6.6). 

 

 
Fig. 6.1. Overlapped time traces of all seven oscillators, an ideal circuit, harmonic motion. 
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Fig. 6.2. Overlapped time traces of all seven oscillators, an ideal circuit, two-frequency quasi-periodicity. 

Fig. 6.3. Overlapped time traces of all seven oscillators, an ideal circuit, three-frequency quasi-periodicity. 
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Fig. 6.4. Overlapped time traces of all seven oscillators, a real circuit, harmonic motion. 

 
Fig. 6.5. Overlapped time traces of all seven oscillators, a real circuit, two-frequency quasi-periodicity. 
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Fig. 6.6. Overlapped time traces of all seven oscillators, a real circuit, three-frequency quasi-periodicity. 

 

 

 
Fig. 6.7. Illustration of the conjecture explaining robust stability of the 3D torus. 
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Analyzing these solutions, we can formulate a conjecture explaining the observed 

behavior of the system under consideration, which is illustrated in Fig. 6.7 for the case of 

identical nodes. According to this approach, a rotational, let us say tangent (to the ring), 

degree of freedom (DoF) resulting from the unidirectional connectivity scheme is independent 

of an individual node, let us say transverse (to the ring) degrees of freedom. A small coupling 

(σ<σ1) does not enable an initiation of the RW and damped oscillations of each item in the 

transverse direction with the frequency ωd take place (Fig. 6.7a), i.e., the global equilibrium 

position (dotted circle in Fig. 6.7a) is stable. The first Hopf bifurcation at σ1 = 0.0332 

activates the rotational degree of freedom (HRW) but transverse vibrations are still damped. 

Thus, now we can observe a transversally stable equilibrium floating harmonically with the 

amplitude A (Fig. 6.7b), defined by Eq. (6.5) and shown in Fig. 6.1, due to rotational forcing. 

In the scheme shown in Fig. 6.7b, it is manifested with an eccentricity of the distance A 

(amplitude of such floating) between solid and dotted circles. Rotations of the solid circle 

cause harmonic oscillations around the stable position represented by the dotted circle. Just 

after a slight increase in the coupling strength, the second Hopf type bifurcation at σ2 = 0.0337 

takes place, which is the first one in the transverse DoF. It activates a limit cycle (LC) of the 

frequency ω1 in the transverse direction (Fig. 6.7c), which is disproportionate to ω0, i.e., the 

frequency of the HRW. As a result, we can see the T2 solution as a combination of the HRW 

and the LC – see Fig. 6.7. After the next Hopf type bifurcation at σ3 = 0.0436, the third 

incommensurate frequency ω2 appears and, consequently, the stable three-frequency quasi-

periodic solution T3 can be observed (Fig. 6.7d and 6.3). However, according to the theorem 

represented by us, the third Hopf bifurcation is only the second in the transverse DoF and then 

the T3 solution can be considered as a superposition of the T2 transverse solution and the 

independent HRW (see Fig. 6.4). Finally, chaos dominates after crossing the limit σ4 = 0.0478 

(Figs. 3.1.1, 3.1.2 and 3.1.5). From the viewpoint of global ring dynamics, it looks like a 

transition to chaos after the fourth Hopf bifurcation but from the transverse DoF point of 

view, this is a realization of the classical NRT scenario where a chaotic attractor appears as a 

product of the 3D torus destruction just after the third consecutive Hopf bifurcation. Thus, 

global dynamics of the ring is a superposition of harmonic rotational forcing (manifested with 

the HRW) and a transversal response of individual oscillators. 
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Fig. 6.8. Bifurcation diagram of the sum ΣNxj versus the coupling parameter σ. 

 

 
Fig. 6.9. Time diagram of the sum ΣNxj for the coupling parameter σ=0.0420. 
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Fig. 6.10. Time diagram of the sum ΣNxj for the coupling parameter σ=0.0440. 

 

 
Fig. 6.11. Time diagram of the sum ΣNxj for the coupling parameter σ=0.0465. 
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Fig. 6.12. Time diagram of the sum ΣNxj for the coupling parameter σ=0.0490. 

 

A good way to illustrate this idea on the example of the system under consideration is 

to extract the transverse response from the global ring dynamics and present its analysis. This 

can be achieved by elimination of the HRW components (clearly visible in Fig. 6.1) from the 

registered global ring signal. The same components are hidden in the skeleton of quasi-

periodic and chaotic solutions. These HRW modes can be simply removed from responses of 

identical oscillators by summing up their signals. Due to the symmetry of their phase 

distribution along the ring, their sum is equal to zero in each moment of the system evolution. 

Thus, such a sum signal does not contain the frequency ω0 (6.4) in the spectrum, so it is 

representative for the transverse dynamics of ring oscillators. In Fig. 6.8, a bifurcation 

diagram of the sum ΣNxj versus σ, corresponding to Figs. 3.1.1 and 3.1.2, and the related time 

courses of this sum (Figs. 6.9-6.12) are demonstrated. The equilibrium remains stable up to 

the value σ2, where the first transverse Hopf-type bifurcation takes place (Fig. 6.8). Next, 

a stable LC in the range σ2<σ<σ3, corresponding to the T2 solution from Figs. 3.1.1 and 3.1.2, 

is observed (see its time diagram in Fig. 6.9). Consequently, the Hopf-type bifurcation at σ3 

leads to the existence of a transverse 2D torus (Fig. 6.10) and its period-doubling (Fig. 6.11) 

in the interval σ3<σ<σ4. This sequence of bifurcations is also reflected in Figs. 3.1.1 and 3.1.2 

for the global three-frequency quasi-periodicity. The last Hopf-type bifurcation at σ4 
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destabilizes the transverse 2D torus and chaotic motion becomes dominant (Fig. 6.12). Thus, 

in the transverse DoF, we observe a typical NRT scenario of a transition to chaos. 

In the case of the mismatch of parameters between ring oscillators, the HRW of the 

frequency ω0 also exists but it is non-symmetric in accordance with the solutions to Eqs. 

(6.7a-c), as shown in Fig. 6.4. This is the reason why the rotational DoF cannot be effectively 

eliminated from the global signal by a sum of the HRW components, so the visualization of 

transverse modes by this method, analogous to that one shown in Figs. 6.8-6.12, is 

impractical. Nevertheless, the conjecture presented above on the superposition effect 

explaining the robust stability of the observed 3D torus is definitely still applicable in the real 

circuit with the parameter mismatch, in spite of some obvious differences in sequences of 

bifurcations between identical and real circuits (compare Figs. 3.1.1, 3.1.2, 3.1.5 with Figs. 

3.1.3, 3.1.4, 3.1.6). 

After analyzing the results of the numerical simulations of a single Duffing oscillator 

with a time delay loop (Chapter 5) and comparing them with the results for a circuit of seven 

identical unidirectionally coupled Duffing oscillators (Chapter 3), we can say that they exhibit 

a considerable similarity. In both cases, there is the first and second Hopf bifurcation. 

A transition from the stationary to periodic solution and then to the quasi-periodic solution 

(2D torus) can be seen. However, in contrast to the unidirectionally coupled oscillators, 

a stable three-frequency torus is not observed in the system with time delay. For a single 

Duffing oscillator with time delay, a period-doubling bifurcation of the 2D torus takes place 

after the second Hopf bifurcation. A further increase in the control parameter (time delay) 

leads to a chaotic solution.  

Summing up, a robustly stable three-frequency quasi-periodic solution in the ring of 

unidirectionally coupled Duffing oscillators has been confirmed numerically and verified 

experimentally. The mechanism of such robust stability has been explained as an effect of the 

structural separation of rotational and transverse DoFs. Moreover, it has been shown that 

initiation and propagation of the RW is possible also in unidirectional rings of slightly non-

identical oscillators. This fact can shed a new light on the nature of the RW phenomenon. On 

the other hand, an absence of a 3D torus in the single Duffing oscillator with a time delay loop 

may be explained by an absence of the RW, which occurs in the ring of unidirectionally 

coupled oscillators. Therefore, a superposition effect of rotational and transversal vibrations 

forms, which stabilizes three-frequency quasi-periodic solutions according to the above 

hypothesis, is not possible in this system. Hence, mathematical and physical properties of the 

RW will be a subject of further investigations in the nearest future. 
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NUMERYCZNA I EKSPERYMENTALNA ANALIZA EFEKTÓW 

SPRZĘŻENIA I OPÓŹNIENIA CZASOWEGO W SZEREGACH 

NIELINIOWYCH OSCYLATORÓW 

 

 

Przedmiotem niniejszej pracy jest analiza klasycznego oscylatora typu Duffinga w dwóch 

konfiguracjach systemowych: 

1. jako układ węzłowy w domkniętym szeregu (pierścieniu) jednokierunkowo 

sprzężonych oscylatorów, 

2. jako układ z pętlą opóźnienia czasowego. 

Głównym celem pracy było pokazanie analogii dynamicznych pomiędzy szeregami 

jednokierunkowo sprzężonych oscylatorów, a układami z opóźnieniem czasowym, głównie w 

kontekście podobieństwa scenariuszy bifurkacyjnych, prowadzących od stanu stacjonarnego 

poprzez ruch regularny do dynamicznego hiper-chaosu. Szczególny nacisk zostanie położony 

na identyfikacje mechanizmu destabilizacji stanu stacjonarnego oraz rozwiązania okresowego 

w rezultacie wzrostu parametru sprzężenia lub wielkości opóźnienia czasowego.  

 Natomiast teza pracy brzmi: Możliwe jest występowanie statecznego, trój-

częstościowego rozwiązania quasi-okresowego w szeregach jednokierunkowo sprzężonych 

oscylatorów oraz istnieje wiele analogii pomiędzy zachowaniami dynamicznymi takich 

układów a oscylatorami z opóźnionym sprzężeniem zwrotnym. 

W pierwszej części pracy (rozdziały 2 i 3) dokonano numerycznej analizy 

bifurkacyjnej szeregu siedmiu identycznych oraz rzeczywistych, tzn. z uwzględnieniem 

zmierzonych na stanowisku doświadczalnym różnic parametrów, sprzężonych 

jednokierunkowo oscylatorów Duffinga. Dokonano również porównania rezultatów symulacji 

numerycznych dla identycznych oraz rzeczywistych oscylatorów.  

W kolejnej części pracy (rozdział 4) zaprezentowano stanowisko doświadczalne, 

przeprowadzono identyfikację jego parametrów oraz badania eksperymentalne celem 

potwierdzenia symulacji numerycznych dla badanego obwodu. Wyniki eksperymentu 

porównano z rezultatami numerycznymi.  

W ostatniej części pracy dokonano analizy numerycznej pojedynczego oscylatora 

Duffinga z wprowadzoną pętlą opóźnienia czasowego (rozdział 5). Wyniki eksperymentu 

numerycznego zostały porównane z wynikami dla szeregów identycznych, sprzężonych 

oscylatorów w kontekście podobieństwa scenariuszy bifurkacyjnych. 
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Podsumowując, w pracy potwierdzono i zweryfikowano doświadczalnie istnienie 

statecznego trój-częstościowego rozwiązania quasi-okresowego w obwodzie 

jednokierunkowo sprzężonych oscylatorów Duffinga. Mechanizm takiej trwałej stateczności 

torusa 3D został w pracy wyjaśniony hipotezą o strukturalnej separacji rotacyjnego (fala 

rotacyjna) i transwersalnych (odpowiedzi oscylatorów) stopni swobody. Z drugiej strony, 

wykazano, że inicjacja i propagacja fali rotacyjnej jest możliwa również w obwodach 

jednokierunkowo sprzężonych oscylatorów rzeczywistych, czyli przy braku idealnej 

zgodności wartości parametrów. Fakt ten może rzucić nowe światło na charakter i dynamikę 

zjawiska fali rotacyjnej.  

Natomiast, zgodnie ze sformułowaną hipotezą, brak rozwiązania w postaci torusa 3D 

w układzie pojedynczego oscylatora typu Duffinga z wprowadzoną pętlą opóźnienia 

czasowego może być spowodowane niewystępowaniem fali rotacyjnej, która pojawia się w 

szeregach sprzężonych jednokierunkowo oscylatorów.  

Matematyczne i fizyczne właściwości fali rotacyjnej generowanej w układach 

jednokierunkowo sprzężonych oscylatorów będą przedmiotem dalszych badań w najbliższej 

przyszłości. 
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