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CHAPTER 1

INTRODUCTION

A growing interest in the theory of nonlinear dgmeal systems has aroused in the last
few years. Applications of nonlinear dynamics candbserved in many different fields of
science such as physics, chemistry, biology, ecacsrangineering sciences.

One of the most exciting and fastest growing gsctd nonlinear dynamics is the
theory of bifurcation and chaos. According to ttheory, dynamical systems, in which there
are rapid changes in stability solutions — bifuarat— or irregular, sensitive to initial
conditions solutions — chaos, are analyzed.

The reason for observation of chaotic behaviatyinamical systems is their property,
which consists in exponential propagation of ifljialose trajectories in the phase space [1].

The first discovery of chaotic behavior was présédrby Jacques Salomon Hadamard,
who published his thesis in 1898 [2], describing thalls moving without friction on the
surface of negative curvature. Hadamard provedahatajectories would be unstable under
those conditions — they would be exponentially afyam each other.

In the late nineteenth and early twentieth centtimg French mathematician Henri
Poincaré dealt with the problem of orbits of threatually attracting celestial bodies [3]
(e.g., a star and two planets). Recognizing thatkéhavior of orbits depends on starting
points, Poincaré was able to show very complicaigats — now called chaotic orbits.
Further, remarkable works on chaotic systems weesgmted by G. Birkhoff in 1920 [4],
M.L. Cartwright in 1952 [5], S. Smale in 1961 [6jchRussian mathematicians, especially
A.N. Kolmogorov [7,8] and his colleagues.

In 1963, Edward Lorenz proposed and examinediteedutonomous chaotic system
of three coupled nonlinear differential equationsdeling the thermal convection in the
atmosphere [9]. He proved that for a certain sefpafameters, the system behaved in
a chaotic manner — the graph of variables in treselspace demonstrated a strange attractor,
now referred to as the Lorenz attractor.

Thirteen years later (1976) Otto Eberhard Rogslesented even a simpler system of

three coupled nonlinear differential equations [1Bpr some parameters, the trajectory
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starting from the initial point located on the s goes into a set called the Réssler strange
attractor.

In 1999, Guanrong Chen and Tetsushi Ueta presemtsinple three-dimensional
autonomous system [11], where they observed a hewtic attractor, which had features of
the Lorenz and Rossler attractors.

In the next few years, more and more researchetsaentists dealt with the issue of
chaos. The reason for this is the fact that thenpimenon of chaos is observed in many areas
of life and science. An example of this, some wdirken the area of biology [12,13,14],
chemistry [15,16,17], economics [18,19,20], phy$ids22,23] can be quoted.

The phenomenon of chaos in mechanical and elactsistems has been also well
known and analyzed for many years. Numerous autsfqgapers describing physical systems
use the Duffing equation [24-28] to model differéyges of nonlinear phenomena or the Van
der Pol equation [29-34], which is used to descsiléexcited systems.

The development of scientific papers on deterrmicaihaos has led to progress in the
description of transition scenarios to chaotic mot45-50,52,53]. In addition, new research
issues such as the control of chaos [35-39] andsyhehronization of chaos [40-44] have

been observed.
1.1. Scenarios of a transition to chaos

The first scenario of a transition from periodicahaotic behavior was presented by
L.D.Landau in 1944 [45] and four years later (1988)E.A.Hopf [46], independently. The
Landau-Hopf scenario assumed that during a tramsibf the control parameter that
characterized the analyzed system, for exampleritieal value of the Reynolds number (R),
which is a parameter characterizing the fluid fldlage steady flow loses its stability. During
an increase in the Reynolds number, some consecuiew disproportionate frequencies

appear (Fig.1.1).

@—'Q—’ () )—= oo
(O]
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R, < R, < R, R, <

Fig.1.1. Scheme of the Landau-Hopf scenario.
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For R—w, the velocity of the generation of a new frequenwyreases, which leads to an
appearance of a wide continuous frequency rangeacteaistic of chaotic behavior.
A solution to the Landau-Hopf scenario can be esgwd by the formula:

y(p,t) = Z A (P)IM@E+D
n=1

where:w = {w, w,, ..., w, }; N = 0; R - o,

Another similar scenario of a transition to chassthe Newhouse-Ruelle-Takens
scenario [47]. It refers to the Landau-Hopf scemand corrects it. In 1971, Ruelle and
Takens proved [48] that an infinite series of Hbglircations was not required in order to
achieve the stabilization of the system. They preska system, which just after the third
Hopf bifurcations reached the orbit, might lose stability and transform into a strange
chaotic attractor (a more detailed descriptionhaf NRT scenario will be discussed later in
this study).

Another scenario of a transition to chaos was ssiggl by M.J.Feigenbaum in 1978
[49,50]. According to this approach, the way ofransition to chaos can be realized by
a series of period doubling bifurcations. An exaen@ a simple, one-dimensional logistic

map:
Ynr1 =44r(1—y,), 0<y<1],

where A is the control parameter. Feigenbaum discoverad ttie factor of the difference

between successive approximations in place ofifnechtion has a constant value:

Apay — A
lim &, = lim —1 "™ — 46692016 ...

n—oo n-0 Apyo — Angq

Thus, he obtained a fixed factor of convergencachvivas also found in the Lorenz model
and in the Henon map [51]. The discovery of thisstant is an important contribution to the

5|Page



explanation of more complex behavior of the chasiistem. Therefore, this convergence
factor is called the Feigenbaum constant.

Another well-known way to chaos is the Pomeau Btashneville scenario [52,53],
which was demonstrated in 1980. It manifests witinaasition to chaotic behavior through
a sudden jump-type solution during the time evolutof the system. This effect is called
intermittency, i.e., a transition between the twpess of behavior — the periodic-like and
chaotic behavior. Analyzing the Lorenz system, tlodgerved that despite of the chaotic
behavior, the trajectory got in the neighborhoodh# fixed point, where it could stay for
a very long time. A movement to the environmenthaf fixed point is seemingly at random.
The reason for the occurrence of intermittency e tLorenz system is saddle-node
bifurcation, which leads to the formation of stahfel unstable fixed points.

Current studies often refer to the above-mentiosednarios in the analysis of
complex dynamical systems.

In the following years, extensive research hasdean emergence of new discoveries
in scenarios of a transition to chaos. One of thestmnteresting and currently studied
phenomena in nonlinear dynamics is an existenca sfable three-dimensional torus (3D

torus).

1.2. 3D torus

Initially, it was thought that the existence of[@ ®rus was unlikely (according to the
theory of NRT). However, numerical studies by Cliag, E.Ott, J.A.Yorke [54,55],
Battelino [56] and experimental studies by J.P.@nll S.V.Benson [57], P.S.Linsay,
A.W.Cumming [58], R.Alaggio, G.Rega [59] have comfed the presence of a stable 3D
torus in the phase space of dynamical systemsontrary to the NRT theory. Further
convincing evidence for the existence of a 3D tomas presented in works by U.Feudel,
W.Jansen, J.Kurths [60], V.S.Anishchenko [61], Wdkd [62], J.Yang [63]. In their studies,
a 3D torus appeared during a transition to chadshéfarcations following the scheme: 2D
torus—3D torus—2D torus—chaos. The occurrence of a 3D torus is relatedeadéct that the
perturbations that affect these attractors aregeoeric due to the symmetry of the system
(according to the NRT theory, a 3D torus is unstalvhen subjected to some general

perturbations).
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Another way of a transition to chaos containin@@ torus was demonstrated in
studies by M.Lopez and F.Marquesa [64,65]. Using MNmavier-Stokes equations, they
introduced the so-called “gluing bifurcation” ofdv@D tori to a new (non-chaotic) 3D torus.

At the turn of the century, M.A.Matias, E.Sancleexl D.Pazo showed in their works
a 3D torus in the ring of unidirectionally couplé€hua oscillators [66] and in the ring of
Lorenz oscillators [67,68,69]. They found [66,6TRt the third zero Lyapunov exponent
appeared as a result of the symmetric Hopf bifiwsnatThen, we observe an additional
rotational degree of freedom, which corresponda ®multaneous shift to the neighboring
oscillator and an advance in time by a period dgithyN (N is a number of oscillators in the
ring). This leads to the third frequency in theutrand to the high-dimensionality of the
chaotic attractorThey found that the spatio-temporal symmetry alldwee to obtain a stable
three-dimensional attractor in a finite range a tontrol parameter. In [68] a different way
of atransition to chaos, which is carried out adow to the scheme: 2D torus3D
torus—high-dimensional chaos, is presented.

Also, scientists from China presented a study mcitv they observed a stable 3D
torus. For example, Q.Bi [70] analyzed two paraioally coupled Van der Pol oscillators.

He presented two ways of bifurcation periodic soha:
1. Periodic solution as a result of generalized staifigrcation leads to a quasi-periodic
solution.
2. Periodic solution as a result of the Hopf bifuroatleads to a stable 3D torus.
With a further increase in the control parametee, $olutions in both cases lead to chaotic
behavior.

On the other hand, the research conducted by WANIhen, Z.Yuan [71] presented
an autonomous system of four first-order equatiamsch showed a rich dynamical behavior.
With an increase in the control parameter, theesysevolves from a 3D torus, through
a series of periodic, quasi-periodic, chaotic b&vaand then proceeds to a hyper-chaotic
solution, ending in a periodic solution.

The phenomenon of a 3D torus is increasingly rezaegl and observed in the analysis
of dynamical systems.

The present Subsection is closely related to pusviSubsection 1.1 because the
presence of a 3D torus is noticeable by a tramsitiiochaotic behavior. Currently, there are
many works that describe different scenarios saasition to chaos containing a 3D torus. In

this thesis, one of these scenarios is presented.
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1.3. Ring of coupled oscillators — a rotating wave

In the cases of series one-way coupled oscillatora ring, an occurrence of the
phenomenon of the so-called rotating wave (RW) khba mentioned. The appearance of the
rotating wave is associated with a loss of stabdftthe system.

Already in 1952, A.M.Turing [72] started the studi/linear instabilities in rings of
uniform systems. In later years, the phenomenothef RW was observed in numerical
[73,74] and experimental [75] studies.

In 1997, A.Matias, V.Perez-Munuzuri, M.N.Lorenad?.Marino and V.Perez-Villar
[76] studied a system of four unidirectionally cteg Chua oscillators. The system retained
symmetry — each of the oscillators had the samaenpaters. They found that the formation of
the rotating wave occurred due to a loss of stgbaf the system. The stability loss of the
system was a result of the Hopf bifurcation. Thé&sodound that a similar mechanism of
a loss of stability occurred in the ring of Loreozcillators. As a result, they found that the
source of an occurrence of the RW in the rings oidivectionally coupled nonlinear
oscillators was the symmetry of that configuration.

A detailed study on an occurrence of the rotataye in rings of unidirectionally
coupled Lorenz oscillators was presented by E.Samdd.Pazo, M.A.Matias [77] in 2006.
They studied a system of three coupled oscillatorsyhich they observed an occurrence of
both the periodic (PRW) and chaotic (CRW) rotatimgve. In the range of the PRW, the
largest Lyapunov exponent is equal to zero andr @kgonents are negative. The CRW range
is divided into two areas due to the Lyapunov exmist the first one was characterized by
the positive largest Lyapunov exponent, two zerd anrest of the negative Lyapunov
exponents, whereas in the second area, the tweskatg/apunov exponents had positive
values, the next one was equal to zero and thesthere negative exponents. For the PRW
and the CRW, they observed a characteristic phafiebetween each of the oscillators. The
graphs of time waveforms for the next, adjacentllasars are phase-shifted &t/N (where
N is a number of oscillators).

In 2010, P.Perlikowsket al. [78] presented the complex dynamics in a ring of
unidirectionally coupled Duffing oscillators. In erpart of the work, the behavior of three
unidirectionally coupled Duffing oscillators is deed. With an increase in the coupling
parameter, the presence of the PRW, the quasigienotating wave (QRW) and the CRW
can be observed. Similarly to papers [76,77], th®MPoccurs as a result of the Hopf
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bifurcation, the QRW arises from the Neimark-Sackédurcation (a 2D torus appears).
A further increase in the coupling parameter cawsésansition to chaotic behavior — the
CRW arises. For the PRW, the resulting waveformstifaing graphs are shifted in phase
with each other by a fixed value. However, the NeknaSacker bifurcation introduced a small
symmetry break into the system — a value of thes@hshift for the next oscillators was
slightly different.

It should be noted that these works describe syst# identical oscillators, which can
be realized only in numerical simulations. Howevarnumber of papers describing the
behavior of a real circuit, in which each oscillaas slightly different parameters (mismatch
of parameters) is significantly smaller [79,80,8lherefore, identical rings of oscillators and
real rings of slightly non-identical oscillatorseagxamined in this dissertation.

1.4. Systems with time delay

The phenomenon of time delay is one of the mogbmant issues that occur during
the analysis of dynamical systems. The researclklumded to this point suggests that the
dynamics of a system incorporating time delay canvlery complicated and can have
a number of interesting features. In additionsidemonstrated that time delay in dynamical
systems in one of the most effective methods obslwntrol (or anti-control), because time
delay can be easily controlled and implemente@ah applications.

Already in 1970’s it was shown that introducinghdéi delay to the simplest, one-
dimensional oscillator could lead to very complethtchaotic behavior (Mackey and Glass
[82], Farmer [83], Lu and He [84]). In the subseagjugears, A.Maccari [85] presented an
effect of time delay and feedback gain on the maklitude of the fundamental resonance in
the nonlinear Van der Pol oscillator. He showed tebosing the appropriate value of time
delay and feedback gain could reduce the peak amdpliand suppress the quasi-periodic
motion.

In 2002, P.Yu, Y.Yuan, J.Xu [86] presented a nuedir oscillator with time delay
introduced for the linear and non-linear part & gguation in the feedback loop. By changing
the value of time delay, they observed a rich dyinahbehavior of the systerithey showed
a presence of periodic, quasi-periodic and chaabtion. They concluded that the feedback
value of the nonlinear part had to be differentnfraero to obtain a chaotic solution.

Furthermore, they noted that only the positive bt value caused bifurcation from one
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state to another. They suggested that a positedbiEck was necessary in order to obtain
a chaotic solution.

In 2003, J.Xu and K.W.Chung [87] presented a Vam Bol-Duffing oscillator
with time delay introduced for the linear and norear part of the equation in the feedback
loop. They got two ways of a transition to solve tthaotic solution — through a period-
doubling bifurcation and a torus decay bifurcatidimey have recognized that time delay
plays a very important role in analyzing the bebawf dynamical systems. A proper
selection of time delay suppresses effectivelyatibns. They have found that time delay can
be used as a simple “switch” to control the behawithe system. The use of time delay
allows one also to generate chaotic solutions.

In this dissertation, a nonlinear Duffing oscitlatwith time delay introduced in the

feedback loop is examined, and in particular, @ade of a transition to chaotic solution.
1.5. Subject of the work — oscillators under analys

The subject of this study is an analysis of thassical Duffing oscillator in two
configurations:
1. as a closed ring of unidirectionally coupling olsddrs (Fig.1.2).

2. as a system with time delay (Fig.1.3).

Fig.1.2. Ring of seven, unidirectionally coupledtiear Duffing oscillators.
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Fig.1.3. Duffing oscillator with time delay.
A nonlinear damped Duffing oscillator (without fej)ds described by the equation:
ii+cu+au+bu®=0 (1.2)

where:a, b, c are parameters. If the parametes a positive number, we are talking about the
so-called single-well Duffing oscillator (one pasit of equilibrium). Otherwiseak0), we
have to deal with the so-called double-well Duffiogcillator (three possible positions of
equilibrium). In this work, a single-well versioa>0) has been subjected to analysis.

Using the Duffing equation, many mechanical angsplal systems and processes can
be modeled, for example:
- mathematical and physical (inverted) penduluni [Ed. 1.4),

a)

Fig.1.4. Mathematicala) and physical (invertedp) pendulum.

11| Page



- vibrations of the buckled beam under the actibaxwal force [25, 26] (Fig. 1.5),

lF

i

Fig.1.5. Buckled beam under the action of axiatéor

- oscillator with a nonlinear spring — a Duffingcdkator [27] (Fig. 1.6),

m

Fig.1.6. Oscillator with a nonlinear spring — a fing oscillator.

- RLC circuits with nonlinear inductors [28] (Fit).7).

R

Fig.1.7. RLC circuit with nonlinear inductors.
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Coupled oscillators in a ring can be describefolipwing general equation:

iy + ciy + aw; + bu® = o(uj_ — ;) (1.2)

where:
o - coefficient of the unidirectionally coupling=1,... N.
For the purpose of the numerical and experimemtalyais, the numbeN=7 of oscillators
was adopted, because a wide and interesting frensdkentific point of view spectrum of
dynamic behavior of the analyzed system was obddorehis value.

On the other hand, a single Duffing oscillator hwiime delay is described the

following equation:

i(t) + cu(t) + au(t) + bu(t)® = p[u(t — 1) — u(t)] (1.3)

where:
T — time delay parameter,
p — delay gain.

1.6. Aims and thesis

The main aim of this dissertation is to show aatyital analogy between a ring of
unidirectionally coupled oscillators and systemghwiime delay, mainly in the context
of similarity of bifurcation scenarios leading frosteady-state through periodic motion to
hyper-chaos. A particular emphasis is placed oaxgerimental verification of the numerical
results and an identification of the mechanism estdbilization of the steady-state and
periodic solution as a result of an increase indbepling parameter or a magnitude of time
delay. Furthermore, the aim of this dissertati@o ahcludes an explanation of the mechanism
of formation and stabilization of a 3D torus.
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Specific objectives of the work:

1.

Numerical modeling of nonlinear Duffing oscillatarsidirectionally coupled in a ring
(EqQ. (1.2)) and single Duffing oscillators withiemé delay loop (Eq. (1.3)).

Stability analysis of stationary states of the stigated array of oscillators as
a function of the increasing coupling parameter.

Analysis of the results and the solutions obseriredhe numerical analysis, in
particular the expected three-frequency quasi-gerisolution.

Design and construction of the experimental ringtimized on the basis of the
numerical simulations.

Experimental confirmation of the numerical resaltsl observations.

6. Description of the mechanism of vibration excitatioin closed arrays

of unidirectionally coupled oscillators.
Identification of the stabilization mechanism ¢ three-frequency torus.

Introduction of a feedback with time delay for #realyzed oscillator.

9. Numerical identification of analogies and differeac between the ring

of unidirectionally coupled oscillators and thetsys with time delay.

10. Compilation of the results, conclusions and a téxhe dissertation.

Work thesis:

A three-frequencyquasi-periodic solution in the ring of unidirectaly coupled

oscillators can occur and there are many analdggéseen the dynamic behavior of such

systems and oscillators with a delayed feedback.
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CHAPTER 2

RING OF SEVEN UNIDIRECTIONALLY COUPLED NONLINEAR
DUFFING OSCILLATORS — STABILITY ANALYSIS OF
STATIONARY STATES

To analyze the steady states (critical points)upidirectionally coupled Duffing
oscillators in a ring (1.2), a conversion of vahgbi.e.,x = u,y = 1, was applied. Also,
a small difference in the parameters of individwakillators (mismatch of parameters),
inevitable in real systems, was taken into acco@sta resultthe obtained system of first

order differential equations takes the general form

Xj =Yj

Vi = —cyj — ax; = bx;® + 0 (kX1 — Ky %) (2.1)

wherej = 1,...,7. The coefficients; andx,; model a possible mismatch of coupling terms in
the real circuit. For identical items, we have noeahivalues of parameterg:=a, bj=b, ¢, =c
andxy; = xyj = 1. The overall coupling coefficient is considered as the control parameter.
When node systems (2.1) are uncoupted (), then the solution to Eq. (2.1) tends toadlst
fixed point U(0,0), i.e.x; = 0,y; = 0, in the phase space due to the presence gfidgr@>0)
and a lack of forcing. Then, free damped vibrati@rscillation death) can be observed. The
coupled oscillators also have only one criticalnpdd(0,...,0) inthe fourteen-dimensional
phase space of system (2.1). In order to evaluatestability, such an analysis for the
linearized system around the critical point is parfed.

In the case of identical coupled oscillators, Efj1) can be written in the following

matrix form:

where:
'U,j S R’2 (] = 1,2, ...,N),
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A — Jacobi matrix of the linear part,

B(u;) — matrix of the nonlinear part,

K: R~ R? — output function (coupling matrix) of each osafitlr variables that is used in the
coupling.

Thus, individual vectors and matrices in the E2) are described by following

formulas:

(% (% _ (%1
y = (y,) E (5';> w1 = (5,0,
_ 0 1 10 0 70 0

A= [—(a + 0) —C] B(u]-) - [_xj3 0] K= [a 0

2.1. Stability of steady states in a circuit ofritleal oscillators

Using [78] in order to analyze the stability ohtsbnary states, the ring of seven

nonlinear Duffing oscillators can be representethenotation of a block matrix:

u=IQAu+Du)+(6GRK)u (2.1.1)

where O is a direct (Kronecker) product of two matricess= [u, U, Us, Us, Us, Us, U7]",
D(u) = diagB(w), ..., B(u7)], | is the 7x7 identity matrixG is the 7x7connectivity matrix
representing the topology of connections betweerritig nodes. For the unidirectional ring

structure, the matrig has the following structure:

=)
[l
CoocooRr o

SO OO RO O
SO ORr OO O
SO RO OO O
O R OO OO O
_ O OO OO O
SO OO OO

Equation (2.1.1) has a symmetric equilibrium peirt [0, 0, 0, 0, 0, 0, 0]

By linearization of Eq. (2.1.1), we obtain a vaoatl equation of the form:
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sSu=[IQ®A+GQ K]|su (2.1.2)
where:du = [dUy, AU, AUz, AU, AUs, ds, 7).

After diagonalization of variational Eq. (2.1.2)vea independent equations appear
[88,89]:

S =(A+yK)dw, j=1,..7, (2.1.3)

where Ay; are variational coordinates andare eigenvalues of the connectivity matéx

which can be expressed as:

y; = e?™/7, ji=1,..7. (2.1.4)
After some transformations, the stability analysiduces to the characteristic equation:
0(1,j) =det(Ml —A—y;K)=0, j=1,..7. (2.1.5)
Substituting Eq. (2.1.4) into Eqg. (2.1.5), we obtai

0(1,)) = det(AMl — A — e®?™/"K) =0, ji=1,..7. (2.1.6)

Solving Eg. (2.1.6), the eigenvalues of the Jaowdirix can be expressed by the formulas:

i2mj

La() =—S+ \/(g)z —a-g(l—e7), j=1,..7. (2.1.7)

For the analyzed, ideal system (with the samenpaters in all subsystems) of seven
unidirectionally coupled nonlinear Duffing osciltas, the dimensionless parameters are as
follows: ¢ = 0.03162;a = 1; and o is the control parameter of bifurcation. A detailed
description of these parameters is given in Chapter

The calculations of the matrix eigenvalues (Figl.2, 2.1.2, 2.2.1, 2.2.2) were

performed with Wolfram Mathematica 8 and the graphse drawn up in OriginPro 8.
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Fig. 2.1.1. Graph of the real eigenvaltres! of linearized system (2.1.2) versus the coupliagametew for a
ring of seven identical Duffing oscillators.
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Fig. 2.1.2. Eigenvalues of linearized system (3.&r2the complex plane (the positive imaginary gl
versus the real parRe 1) for a ring of seven identical Duffing oscillatosgth different values of the coupling
parametew.
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In Fig. 2.1.1 a dependence of the real eigenvaRaeisof linearized system (2.1.2) as
a function of the coupling parameterfor a ring of seven identical Duffing oscillators i
shown. In this graph, the critical value of the gimg parameter, for which the first real
eigenvalue changes its sign to positive, amounts #d0.0332. This means that there is
a supercritical Hopf bifurcation — a transitiontbé system from the critical point to the limit
cycle occurs. The graph shows the curves repregefdurteerRe 4, however, only seven of
them are visible because each curve is drawn twice.same values of real parts overlap the
following pairs of oscillatorsf = 1 andj = 6,j = 2 andj = 5,] = 3 andj = 4. For the oscillator
j =7, the values of real parts are fixed and theesiamthe positive and negative real part.

In Fig. 2.1.2, eigenvalues of linearized systenl.@) on the complex plane for five
different values of the coupling parameter @.03; 0.06; 0.10; 0.20; 0.40 are depicted. Only
positive values of the imaginary parts are drawroider to illustrate better the results.
Negative values of the imaginary part are a symmetflection with respect to theni = 0
points shown in the described graph. In Fig. 2.4.2pnstant value for each of the parameter
o can be seen. Drawing a vertical broken line thihotlgs constant value, the symmetry of the
remaining points with respect to this line can beasved. Combining the received points for

each adopted value of the parameter, we obtairucteristic ellipse.

2.2. Stability of steady states in a circuit ofl rescillators

In next Chapters (3 and 4), a real system in wlii@dre is no perfect symmetry
between the oscillators is examined. Values of ghmmeters anda and a value of the
dimensionless coupling between oscillators;,-«y; - are different for each of the oscillator.
Therefore, a stability analysis was also perforrfadthe real system. The real parameters
have been reduced to a dimensionless form (a timmso the dimensionless form and all the

indications and explanations of variables — seegp@hat) yielding:

D1:c, = 0.031667;a, = 1.0000; kz, = 0.987; ky, = 0.984,
D2:c, = 0.031379; a, = 1.0065; kz, = 0.993;ky, = 0.992,
D3:c; = 0.031213; a3 = 1.0148; kz; = 1.003; ky; = 1.004,
D4:c, = 0.031533; a, = 0.9948; kz, = 0.982;ky, = 0.982,
D5: ¢ = 0.032047; as = 1.0393; kzs = 1.021; kys = 1.023,
D6: ¢, = 0.031829; a, = 1.0137; kzs = 0.995; Ky, = 0.998,
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D7:¢, = 0.031490; a, = 0.9953; kz, = 0.976; ky, = 0.976.

Using Eq. (2.1.2) for the ring of seven real noaér Duffing oscillators, we have:

Su=[I®Q4+6QK|éu, j=1,..7, (2.2.1)
where:
_ 0 1
Y=g+ o xy) —Cj]
[ o 0
Kj = o *kz; O

In calculation of the eigenvalues of Eq. (2.2th¢ following graphs were obtained:

0’20 L | s 1 L | . | . | . | ' | L 1 s |

0,15 8
0,10 -
0,05 =

0,00 =

Re 1

-0,05 1 _
-0,10 | L,
-0,15 _
_0’20 _- .
5=0,0365 I

OB+ T T T
0,00 005 010 0415 020 025 030 035 040 045 0,50

Fig. 2.2.1. Graph of the real eigenvalies) of linearized system (2.2.1) versus the coupliaggmeter for a
ring of seven real Duffing oscillators.
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Fig. 2.2.2. Eigenvalues of linearized system (3.8rlLthe complex plane (the positive imaginary gharti
versus the real parRe 1) for a ring of seven real Duffing oscillators witkfferent values of the coupling
parametew.

In Fig. 2.2.1, a dependence of the real eigengdRad. of linearized system (2.2.1) as
a function of the coupling parameterfor a ring of seven real Duffing oscillators is sho
As a result of the occurrence of two different paeters in the coupling term for real
oscillators &, xy; — detailed explanation in Chapter 4), the expoessi* x; and o* k,; were
introduced into the matrice§ andK; (Eq. (2.2.1)). This makes it possible to compamg Fi
2.2.1 with Fig. 2.1.14), and take into account different coupling pararsefor each of the
oscillators &, xyj). In contrast to the identical system (Fig. 2.1thp critical value of the
coupling parameter, for which one of the real gadnges to a positive sign,ds= 0.0365.
For this value, the Hopf bifurcation occurs — ansiion from the critical point to the limit
cycle takes place. Similarly, as shown in Fig. 2.bnly seven curves can be seen because for
pairs of oscillator$ = 1 andj = 6,) = 2 andj = 5,] = 3 andj=4, we get the same values of real
parts. For the oscillatgr = 7, the values of the real parts are fixed andstéime for the
positive and negative real part.

In Fig. 2.2.2, eigenvalues of linearized systen2.® on the complex plane for five
different values of the coupling parameter@.3; 0.06; 0.10; 0.20; 0.40) are demonstrated by
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analogy to Fig. 2.1.2. Negative values of the imagy part are also a symmetric reflection
with respect to thém 4 = 0 points shown on the described graph. One csm sde almost
constant value of each of the parameter for eachs, this value is slightly different. The
values of these differences are not larger thaf10.Therefore, despite a slight symmetry
breaking, we obtain a characteristic ellipse conmgirthe remaining points for each of the

parametes.
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CHAPTER 3

NUMERICAL ANALYSIS OF A RING OF SEVEN UNIDIRECTIONALY
COUPLED DUFFING OSCILLATORS

This chapter presents results of the numericalyarsabf a ring of seven identical and
also real, unidirectionally coupled, nonlinear Dugf oscillators (Eq. (2.1)). In both cases, an
impact of changes in a value of the coupling cogdfit on the dynamics of the test system
was analyzed. In addition, a comparison of the ltesof the numerical simulations for
identical and real oscillators was performed.

The obtained results are represented by:
- bifurcation diagrams (Figs. 3.1.1, 3.1.3),
- phase portraits (Figs. 3.1.7, 3.1.9, 3.1.11, 3,131815, 3.1.17, 3.1.19, 3.1.21, 3.1.23,

3.1.25, 3.1.27),

- Poincaré maps (Figs. 3.1.8, 3.1.10, 3.1.12, 3.1314,16, 3.1.18, 3.1.20, 3.1.22,

3.1.24, 3.1.26, 3.1.28),

- Lyapunov exponents graphs (3.1.2, 3.1.4-3.1.6),
- FFT spectrum analysis (3.1.29-3.1.37).

According to Eqg. (2.1), a full description of theng of seven identical,

unidirectionally coupled, nonlinear Duffing oscilbas can be represented by fourteen first-

order differential equations:

X1 = Y1

y1 = —cy; —axq — bxy? + 0 (x; — x1)

Xy = Yo

Y2 = —Cy; —axy; — bx23 + o(x; — x3)

X3 = Y3

y3 = —cy3 — axz — bxz® + 0(x; — x3)

Xy = Ya (3.1)
Va = —CYs — AXy — bx43 + o (x3 — x4)

Xs = Ys

ys = —cys — axs — bxs3 + a(xy — x5)
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X6 = Yo

Y6 = —CYg — AXg — bx63 + o (x5 — Xx¢)
X7 =7
y; = —cy; — ax; — bx;® + 0(xg — x7)

where the parameters are:

¢ =0.03162; a=1.00; b=10;

ando = Rs*k s a bifurcation parameter, wheRs [1 <0+99900> {2], k = 0.00001 [19].
Parameter values were selected in such a way a®rtespond to the values of
elements (resistors and capacitors) of the iddrgleatrical system (see Chapter 4).
The circuit of seven real, unidirectionally coupl@onlinear Duffing oscillators can be

represented by the following equations:

X1 =1

Y1 = —C1y1 — Q1Xq — byxy? + 0(Kp1 x5 — Ky1X1)
X2 =Y>

Y2 = —C2¥2 — ApXy — byxy® + 0 (KppXy — KypXy)
X3 =3

Y3 = —C3Y3 — AzX3 — baxz® + 0 (k3x, — Ky3X3)
e =, (3.2)
Vi = —Ca¥a — AuXq — baxy® + 0(Kzax3 — KyaXs)
X5 = Ys

Y5 = —Cs¥s5 — AsXs — bsxs> + 0 (Ky5X4 — KysXs)
X6 = Vo

Y6 = —C6¥s — AsXe — bsXs> + 0(Kz6X5 — KyeXe)
X7 = Y7

Y7 = —C7¥7 — A7X7 — byxy® + 0 (kz7Xs — Ky7X7)

where the values of each parameter are:

¢, = 0.031667;  a, = 1.0000; b, = 9.940;
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¢, = 0.031379;  a, = 1.0065; b, = 10.015;
c; = 0.031213;  a; = 1.0148; by = 10.107;
¢, = 0.031533;  a, =0.9948; b, = 9.898;
cs = 0.032047;  ag = 1.0393;  bs = 10.320;
ce = 0.031829;  ag = 1.0137; by = 10.056;
¢, = 0.031490;  a, = 0.9953; b, = 9.853;

Kz, = 0.987; ky, = 0.984;
Kz, = 0.993; Ky, = 0.992,
kz3; = 1.003; kys; = 1.004,
Kz, = 0.982; ky, = 0.982,
kzs = 1.021; kys = 1.023,
Kzg = 0.995; Kye = 0.998,
Kz, = 0.976; ky; = 0.976.

The above dimensionless parameters correspondetovdlues of elements (resistors and

capacitors) of the real electrical circuit (see @ba4).

3.1. Numerical results

All bifurcation diagrams, phase portraits and Ba®@ maps were made with the
Borland-Delphi software, whereas Lyapunov exponem&se calculated using the C++
software. These results are presented below.
| hereby wish to thank my colleagues from the Donsof Dynamics, Lodz University of
Technology — Dr. Przemystaw Perlikowski and Dr.ukiDabrowski for their assistance in the

implementation of the programs for the purposeasisfdissertation.
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Fig. 3.1.1. Bifurcation diagram of the varialxeversus the coupling parametefor a circuit of seven identical
Duffing oscillators (Eq. (3.1)).
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Fig. 3.1.2. Graph of the five largest Lyapunov engrtsi versus the coupling parametefor a circuit of seven
identical Duffing oscillators (Eq. (3.1)).
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Fig. 3.1.3. Bifurcation diagram of the varialseversus the coupling parametefor a circuit of seven real
Duffing oscillators (Eqg. (3.2)).
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Fig. 3.1.4. Graph of the five largest Lyapunov exgratsi versus the coupling parametefor a circuit of seven
real Duffing oscillators (Eqg. (3.2)).
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Fig. 3.1.5. Detailed graph of the largest Lyapuagponentsd versus the coupling parametefor a circuit of
seven identical Duffing oscillators (Eg. (3.1)).
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Fig. 3.1.6. Detailed graph of the largest Lyapuagponents. versus the coupling parametefor a circuit of
seven real Duffing oscillators (Eq. (3.2)).
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After analyzing the bifurcation diagram (Fig. 3.)land the graph of largest Lyapunov
exponents (Fig. 3.1.2) for a circuit of seven id=aitDuffing oscillators, it can be concluded
that the first Hopf bifurcation occurs for the paetero; = 0.0332. As a result, the first
frequency of oscillation appears and a transitimmf the stable equilibrium position to the
limit cycle is observed in the test system undersaderation. Then, all oscillators in the ring
start to vibrate harmonically andperiodic rotating wave (PRW - see Subsection 1.3) is
formed. The largest Lyapunov exponent is equakto.zSuch a harmonic solution takes place
in a small range of the coupling coefficient £ <0.0332+0.0336>, i.e., betweenando in
Fig. 3.1.2. Fors > 0.0336, the second disproportionate frequen@eafs as a result of the
next Hopf-type bifurcation. In this interval, twargest Lyapunov exponents are equal to zero.
The transition of the system from a periodic tosiyseriodic solution leads to the appearance
of a 2D torus, which dominates in a wide range bf tcoupling parameter -
o [1<0.0337+0.0435>. A further increase in the couplparameter, over the valag causes
an emergence of the subsequent, third Hopf-typardafion. The third disproportionate
frequency appears and three largest Lyapunov exp®rigave values equal to zero, i.e.,
a transition from the 2D torus to a three-frequesaiation —a 3D torus (Fig. 3.1.5) — takes
place. The range of the 3D torus occurrence [$<0.0436+0.0477>. In addition, for the
coupling parametes = 0.0458, a period-doubling bifurcation in the 8Wus appears. For
o4 =0.0477, the largest Lyapunov exponent reachmssiive value and the system becomes
to behave chaotically. Chaos appears on the 23 tbecause the next two largest Lyapunov
exponents are equal to zero. Chaotic behavior ecdor the coupling parameter
0 [1<0.0478+0.0486>. For the coupling parameter 0.0486, the second largest Lyapunov
exponent reaches a positive value and a tranditosn chaotic to hyper-chaotic behavior is
observed. Hyper-chaotic behavior also occurs orRihdorus, because the next two largest
Lyapunov exponents are equal to zero.

Comparing the bifurcation diagram (Fig. 3.1.3) ahd graph of largest Lyapunov
exponents (Fig. 3.1.4) for a circuit of seven rBaiffing oscillators with the bifurcation
diagram (Fig. 3.1.1) and the graph of largest Lympuexponents (Fig. 3.1.2) for a circuit of
seven identical Duffing oscillators, it can be séeat the first Hopf bifurcation occurs for the
coupling parameter value slightly larger than fog tdentical system. The first frequency of
oscillation occurs for the coupling parameter= 0.0365. Similarly to the identical system,
the largest Lyapunov exponent is equal to zeroprs® can observe a periodic solution.
Periodic motion also occurs in a narrow range of tkoupling parameter -
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0 [1<0.0365+0.0370>. An increase in the coupling pat@movers, = 0.0371 leads to the
second Hopf-type bifurcation. A second dispropordite frequency appears and the two
largest Lyapunov exponents are equal to zero. &ilyito the identical system, as a result of
the system transition from the periodic solutioriha quasi-periodic one, a 2D torus appears.
The 2D torus occurs for the coupling parametér <0.0371+0.0495>. Far; = 0.0496, the
third disproportionate frequency appears, as a resuheothird Hopf-type bifurcation. The
three largest Lyapunov exponents assume the vdlweero, which means that the three-
frequency solution (a 3D torus in Fig. 3.1.6) isabé. However, in contrast to the ideal
system, a 3D torus does not occur until the systemches a chaotic solution. The three-
frequency solution exists in the range of the cmgplparameters [ <0.0496+0.0502>.

A further increase in the coupling parameter ledmlsa reverse Hopf bifurcation and
a sequence of period-doubling bifurcations in thage ¢ [1 <0.0508+0.0512>. They are
period-doubling bifurcations of the 2D torus, besmthe value of the third largest Lyapunov
exponent is negative. Far, = 0.0513, the largest Lyapunov exponent reach@esitive
value. Then, a transition from the quasi-periodituson to the chaotic one takes place. As
for the ideal system, this is a chaotic behaviortb@ 2D torus, because values of two
consecutive Lyapunov exponents are equal to zerdurfher increase in the coupling
parameter leads to an increase in the value obdlgend largest Lyapunov exponent. This
exponent reaches a positive value 0¥ 0.0521, resulting in a transition from chaotic t
hyper-chaotic behavior.

For each of the solutions, i.e., the fixed pothg limit cycle, the 2D torus, the 3D
torus, the period-doubling (the real system) andoth behavior (hyper-chaotic), phase
portraits and Poincaré maps (Fig. 3.1.7 — 3.1.26)ewgenerated. In addition, an FFT
spectrum analysis was performed for each of thatisol (Fig. 3.1.27 — 3.1.35).

Graphs for the following values of the couplinggraeters: 0.0330; 0.0332; 0.0430;
0.0440; 0.0500 were prepared for a circuit of sedentical Duffing oscillators.

The following values of the coupling parameter0.0360; 0.0368; 0.0490; 0.0500;

0.0540 were selected for a circuit of seven redfiby oscillators.
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Fig. 3.1.7. Phase portrait for the coupling paramet0.0330 — a circuit of seven identical Duffing distors.
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Fig. 3.1.8. Phase portrait for the coupling par@met0.0360 — a circuit of seven real Duffing oscilksto
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Fig. 3.1.9. Phase portrait for the coupling paramet0.0332 — a circuit of seven identical Duffing distors.
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Fig. 3.1.10. Poincaré map for the coupling paramet8.0332 — a circuit of seven identical Duffing distors.
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Fig. 3.1.11. Phase portrait for the coupling parteme=0.0368 — a circuit of seven real Duffing oscillato
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Fig. 3.1.12. Poincaré map for the coupling paramet.0368 — a circuit of seven real Duffing oscillato
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Fig. 3.1.13. Phase portrait for the coupling partame=0.0430 — a circuit of seven identical Duffing distors.
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Fig. 3.1.14. Poincaré map for the coupling paramst8.0430 — a circuit of seven identical Duffing distors.
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Fig. 3.1.15. Phase portrait for the coupling partame=0.0490 — a circuit of seven real Duffing oscillato
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Fig. 3.1.16. Poincaré map for the coupling paramet6.0490 — a circuit of seven real Duffing oscillato
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Fig. 3.1.17. Phase portrait for the coupling partame=0.0440 — a circuit of seven identical Duffing distors.
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Fig. 3.1.18. Poincaré map for the coupling paramet8.0440 — a circuit of seven identical Duffing distors.
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Fig. 3.1.20. Poincaré map for the coupling paramet.0500 — a circuit of seven real Duffing oscillato
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Fig. 3.1.27. FFT spectrum analysis for the couppagametets=0.0332 — a circuit of seven identical Duffing
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Fig. 3.1.28. FFT spectrum analysis for the coupfingametes=0.0368 — a circuit of seven real Duffing
oscillators.
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Fig. 3.1.29. FFT spectrum analysis for the couppagametets=0.0430 — a circuit of seven identical Duffing

oscillators.
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Fig. 3.1.30. FFT spectrum analysis for the coupfingametes=0.0490 — a circuit of seven real Duffing
oscillators.
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Fig. 3.1.31. FFT spectrum analysis for the couppagametets=0.0440 — a circuit of seven identical Duffing

oscillators.
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Fig. 3.1.32. FFT spectrum analysis for the couppagametets=0.0500 — a circuit of seven real Duffing
oscillators.
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Fig. 3.1.33. FFT spectrum analysis for the couppagametets=0.0505 — a circuit of seven real Duffing
oscillators.
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Fig. 3.1.34. FFT spectrum analysis for the coupfingametes=0.0500 — a circuit of seven identical Duffing
oscillators.
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Fig. 3.1.35. FFT spectrum analysis for the couppagametes=0.0540 — a circuit of seven real Duffing
oscillators.

3.2. FFT analysis

To use a concept of the dimensionless frequencull the frequencies on the FFT
spectrum analysis graphs (Fig. 3.1.27-3.1.35) wlesieled by the value, — the fundamental
frequency characterizing the ideal circuit (seeiitr4).

Comparing the spectrum of the signal for a cironiit seven identical Duffing
oscillators with the spectrum of the signal for iecwit of seven real Duffing oscillators,
identical solutions for the corresponding areathefbifurcation of the two systems — periodic
solutions, the 2D torus, the 3D torus, the chastitition — can be seen practically. A small
difference in the values of the received freques)aiesulting from a difference in parameters
between the identical and real system, is obsei&ith an increase in the coupling parameter
o, the value of the frequency rises.

The periodic solution is represented by a singlan frequency2,, which is the result
of the first Hopf bifurcation (Fig. 3.1.27, 3.1.28)The emergence of the second
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disproportionate frequency (the second Hopf biftiocd causes an appearance of next
frequencies around the main frequency (Fig. 3.139,30). Analyzing the newly formed
peaks, one can see that the offset between alvegtpeaks and the main peak is constant or
is a multiplication of this constant (for all theadyzed solutions, &0.00002 difference is
related to the sampling frequency of the signals A result, the first frequency
is characterized by the pedak and the second, disproportionate to the first feaqy, is
associated with a fixed value (marked in red ongitaghs) of other peaks shifted with respect
to the pealQy:

QTL == !20 + Tlﬁl (321)

where:

£1(=0.00002) — constant offset between the peaks,

n — number of the analyzed frequency.

For example, using Fig. 3.1.29 and formula (3.2Hg,frequency marked &y, is:

0, =0y + 2B, = 0.16572 + 2 + 0.00256 = 0.17084

As a result of the third Hopf-type bifurcation, thieird frequencyQ.n appears, which is
disproportionate to the two previous on€g, (and Q). Newly formed peaks are also
characterized by a constant offset relative topbaks of the first and second frequency (the
value marked in green on the graphs). The thirgrdortionate frequency can be described

by the equation:

Q. = 02, + M, (3.2.2)

where:
/2 (=0.00003 - constant offset between the peaks,
n, m- number of the analyzed frequency.

Using formula (3.2.2), the frequengg; of Fig. 3.1.32 can be calculated as follows:

Dy =0, 4 By = 0 + 2B, + B, = 0.16519 + 2 * 0.00300 + 0.00081 = 0.172
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For the circuit of seven real Duffing oscillatora, series of period-doubling
bifurcations of the 2D torus (Fig. 3.1.21, 3.1.23h be seen, which is not present in the case
of identical oscillators. In Fig. 3.1.33, newly foed peaks that divide the distance between
the peaks representing the quasi-periodic solyéntorus), for example, peak¥ andQ_4 at
equal distances, are shown. The distance betweds Qgand ., is divided by the value of
Q.,, and then the distance between pe@kand Q. is divided by the value aP.;. In such
away, aseries of two period-doubling bifurcatiafsthe 2D torus is manifested on the
frequency diagram. To calculate the value of acsetefrequency, formula (3.2.1) should be

used. Calculating the frequen€y we obtain:

2, = Ny + By = 0.16547 + 0.00076 = 0.16623

For chaotic (hyper-chaotic) solutions (Fig. 3.1.3.1.35), it is difficult to present
a description of the dominant frequencies as welthe relationships between them. The

resulting frequency spectrum is continuous. Theegfdahe spectral signal analysis with
a detailed identification of the peak values wapassible to carry out in this case.
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CHAPTER 4

ANALYSIS OF AN EXPERIMENTAL CIRCUIT OF SEVEN
UNIDIRECTIONALLY COUPLED DUFFING OSCILLATORS

In this Chapter, a structure of a real circuitentfication of the parameters and
experimental confirmation of the numerical investigns for a circuit of seven real,

unidirectionally coupled, nonlinear Duffing osctbhas is presented.

4.1. Structure and parameters of the experimeigtal r

For the purposes of an experimental analysis efréal circuit, an electrical system
shown in Fig.4.1.2 was built. This system consistsLM358N operational amplifiers,
AD663JN multipliers, resistors, capacitors, a 2pirf©Oheader, jJumpers and a power strip.
The LM358N operational amplifier is a dual low-paveanplifier (Fig. 4.1.1). The voltage of
the amplifier is 3 - 32V and the temperature radge-70°C.

1 U 8
OUTPUT A +V
INVERTING 2 7
ey OUTPUT B
A B
NON-INVERTING 3 | — 6 INVERTING
INPUT A INPUT B
- 4 5 NON-INVERTING
INPUT B

Fig. 4.1.1. Scheme of the LM358N operational argglif
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R149

R223

R186

R75
R112

Fig. 4.1.2. Schematic diagram of the electricatuirof seven real, unidirectionally coupling, nioelar Duffing
oscillators.
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Fig. 4.1.3. Scheme of the AD633JN multiplier.

The AD633JN multiplier voltage (Fig. 4.1.3) is £&18V, the temperature range: 0 - +70°C.
The multiplier is characterized by a very high aecy — the maximum multiplication error is
2%. The non-linearity in the system is realizedimans of this multiplier:

(X1 —Xz) (Y1 — Y2)
W = Z
10V *

where:

X1, Xz, Y1, Y2 — inputs,

W — output,

Z — input for adding a variety of analog functions.

The Rs1+Rs7 resistors, visible in Fig. 4.1.2, iempént a coupling between the
oscillators. They are drawn in a simplified mannerfact, each of the resistors is composed
of a group of resistors, a 2x10 pin header and gre1py means of which it is possible to set

a coupling between adjacent oscillators (see Higl.
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Fig. 4.1.4. Detailed scheme of the Rs1+Rs7 coupksgstors.

A wiring diagram for all components on the cirdoitard is shown in Fig. 4.1.5.
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Fig. 4.1.5. Printed circuit board (PCB) — wiringhggonents.

The constructed board is a double-sided PCB,same paths are routed on the top
layer (red paths) and the remaining ones on thtmotayer (blue paths). Nominal values of

resistors and capacitors are as follows:

R1,R2,R38,R39,R75,R76,R112,R113,R149,R150,R186,R187,R223,R224 = 1ML,
R3,R5,R6,R8,R9,R40,R42,R43,R45,R46,R77,R79,R80,R82,R83,R114,R116,R117,
R119,R120,R151,R153,R154,R156,R157,R188,R190,R191, R193,R194, R225,R227,
R228,R230,R231 = 100kQ;

R4,R7,R10,R11,R12,R13,R14,R15,R16,R17,R18,R19, R41, R44, R47,R48,R49,R50,R51,
R52,R53,R54, R55,R56,R78,R81, R84, R85, R86, R87,R88,R89,R90,R91, R92,R93,R115,
R118,R121,R122,R123,R124,R125,R126,R127,R128,R129,R130,R152,R155,R158,
R159,R160,R161,R162,R163,R164,R165,R166,R167,R189,R192,R195,R196,R197,
R198,R199,R200,R201,R202,R203,R204, R226,R229,R232,R233,R234,R235,R236,
R237,R238,R239,R240,R241,R260,R261,R262,R263,R264,R265,R266 = 10k();
R20,R21,R22,R23,R24,R25,R26,R27,R28,R57,R58,R59,R60,R61, R62,R63, R64, R65,
R94,R95,R96,R97,R98,R99,R100,R101,R102,R131,R132,R133,R134,R135,R136,R137,
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R138,R139,R168,R169,R170,R171,R172,R173,R174,R175,R176,R205,R206,R207,
R208,R209,R210,R211,R212,R213,R242,R243,R244,R245,R246,R247,R248,R249,
R250 = 1kQ;
R29,R30,R31,R32,R33,R34,R35,R36,R37,R66,R67,R68,R69,R70,R71,R72,R73,R74,
R103,R104,R105,R106,R107,R108,R109,R110,R111,R140,R141,R142,R143,R144,
R145,R146,R147,R148,R177,R178,R179,R180,R181,R182,R183,R184, R185,R214,
R215,R216,R217,R218,R219,R220,R221,R222 = 100Q;
C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14 = 10nF.

In the constructed real circuit, it is impossilite select all the elements having
identical nominal values like in the ideal circuftctual, measured values of resistors and

capacitors, in the real electric circuit, are dkfues:

D1:R1 = 1006k(; R2 = 1005kQ; R3 = 99.4k(); R4 = 10.00kQ; R5 = 100.2kQ;
R6 = 100.3k(; R7 = 9.98kQ; R8 = 100.3k}; R9 = 100.1kQ; R10 = 10.02kQ;
R11,R12,R13,R14,R15,R16,R17,R18,R19 = 10.02k(;
R20,R21,R22,R23,R24,R25,R26,R27,R28 = 998();
R29,R30,R31,R32,R33,R34,R35,R36,R37 = 100.2Q;

C1 = 11.80nF; C2 = 12.06nF;

D2:R38 = 1007k(}; R39 = 1004kQ; R40 = 99.4k(); R41 = 9.99k(); R42 = 100.4kQ;
R43 = 100.2k(); R44 = 10.01kQ; R45 = 100.2k}; R46 = 100.2k(); R47 = 10.02kQ;
R48,R49,R50,R51,R52,R53,R54,R55,R56 = 10.02k(;
R57,R58,R59,R60,R61,R62,R63,R64,R65 = 998();
R66,R67,R68,R69,R70,R71,R72,R73,R74 = 100.2();

C3 = 11.92nF;C4 = 11.79nF;

D3:R75 = 1006k(; R76 = 1005kQ; R77 = 99.5k(}; R78 = 9.99k(); R79 = 100.3kQ;
R80 = 100.3k); R81 = 10.00kQ; R82 = 100.0k(}; R83 = 100.1k(); R84 = 10.01kQ;
R85,R86,R87,R88,R89,R90,R91,R92,R93 = 10.02k(;
R94,R95,R96,R97,R98,R99,R100,R101,R102 = 998();
R103,R104,R105,R106,R107,R108,R109,R110,R111 = 100.20;

C5 = 11.63nF; C6 = 12.01nF;
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D4:R112 = 1007k}; R113 = 1005kQ; R114 = 99.5kQ; R115 = 10.00k(;
R116 = 100.3k(); R117 = 100.2kQ; R118 = 10.01kQ; R119 = 100.3kQ;
R120 = 100.2kQ); R121 = 10.00kQ;
R122,R123,R124,R125,R126,R127,R128,R129,R130 = 10.02kQ;
R131,R132,R133,R134,R135,R136,R137,R138,R139 = 998Q;
R140,R141,R142,R143,R144,R145,R146,R147,R148 = 100.20;

C7 = 11.85nF; C8 = 12.00nF;

D5: R149 = 1007kQ; R150 = 1005kQ; R151 = 99.2kQ; R152 = 9.99k(;
R153 = 100.1kQ; R154 = 100.2kQ; R155 = 10.02k(); R156 = 100.3kQ;
R157 = 100.3k); R158 = 10.01kQ;
R159,R160,R161,R162,R163,R164,R165,R166,R167 = 10.02kQ;
R168,R169,R170,R171,R172,R173,R174,R175,R176 = 998Q;
R177,R178,R179,R180,R181,R182,R183,R184,R185 = 100.2;

C9 = 11.66nF; C10 = 11.72nF;

D6: R186 = 1007k(); R187 = 1005kQ; R188 = 99.1kQ; R189 = 9.99k(;
R190 = 100.4k(; R191 = 100.2kQ; R192 = 10.02kQ; R193 = 100.2k(Q;
R194 = 100.2k; R195 = 10.00k(;
R196,R197,R198,R199,R200,R201,R202,R203,R204 = 10.02kQ;
R205,R206,R207,R208,R209,R210,R211,R212,R213 = 998Q;
R214,R215,R216,R217,R218,R219,R220,R221,R222 = 100.20;

C11 = 11.74nF; C12 = 11.91nF;

D7:R223 = 1006k(}); R224 = 1003kQ; R225 = 99.1kQ; R226 = 10.00k(;
R227 = 100.4k(); R228 = 100.4kQ; R229 = 9.99kQ; R230 = 100.3k(};
R231 = 100.2kQ; R232 = 10.02kQ;
R233,R234,R235,R236,R237,R238,R239,R2040,R241 = 10.02kQ;
R242,R243,R244,R245,R246,R247,R248,R249,R250 = 998Q;
R251,R252,R253,R254,R255,R256,R257,R258, R259 = 100.2();

C13 = 11.89nF; C14 = 12.05nF.
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4.2. Mathematical description

A differential equation was derived on the badisacscheme of the first coupled
Duffing oscillator (Fig. 4.2.1).

Rsl
| —
—_—
R10 1
= H
W;
R4 oy = X, reeo U
I I

1
WX W X, S
w. |, s ¥,
Lo L
= ADGIIIN — ADE3IN

f— ey

Fig. 4.2.1. Scheme of the first of coupled Duffoegillators.
For w, the equation is:

1 1 1 1
= —— | wedt - —— | wydt ——— | wdt ——— | wdt 421
Wi="p1c1) 3 RZlewl R3lew R4Cljw2 (421

From the characteristics of the AD633JN multipliesults:

w, = 2 (4.2.2)

For w, we can write a relationship:

__ 1 RS vyat 4223
w=—z7c2) CrRs (4.2.3)

After integration of Eq. (4.2.3), we obtain:
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R6

w = mwl (424)
A transformation of Eq. (4.2.4) yields:

_ R7C2RS s
Wy = ——pr—W (4.2.5)
For ws, we can write a relationship:

_ Rs1 ( R9 ) Rs1 _ Rs1R9 Rs1 Yy
3= "R10\ R8") R2607 T R10R8" T R2607 (4.2.6)
Substituting Egs. (4.2.1), (4.2.2) and (4.2.6) i&tp (4.2.4), we have:

__R6 1 ~f(Rs1R9 Rs1 )dt 1 ‘f<R7C2R5 ,)dt
W= 27cors U Rict ) \Riors” " R260Y R2C1 R6 "
1 dt——— [ ¥ 4 427
r3ct) V% " raci ) 100 (#:2.7)
An integration of Eq. (4.2.7) gives:
_ R6 Rs1R9 _ ~  Rsl R7C2R5 1 1 ;
W= p7cars C Riciriors " T Ricirze0? " Rzcire” " R3c1” " 1ooraci"
(4.2.8)

After a transformation of Eq. (4.2.8), a dimensiatifferential equation was obtained:

v R6 R6 ; R6Rs1

Wt rac1” T r3rsr7cicz” T 1oorarsr7cicz” T RiRsrR7Rz60C1C2 Y
R6R9Rs1

" R1RSR7R8R10C1C2" (4.2.9)

For the needs of mathematical analysis such asaflealation of Lyapunov exponents,
Eq. (4.2.9) has to be written in a dimensionlessfafter the following transformations:
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1 .1 1. R3 . R3RsL _ R3R9Rsl 4210
wo2” TR2CTwg wy " T T100r4" T R1R2607  R1R8R10"” (4.2.10)

Dividing Eq. (4.2.10) by ¥=1V [90]:

1 1 1 1 R3 1 . R3Rsl1 1  R3R9Rsl1

+ +—wt— ———— g —————
Vows? | R2ClwgVowe' ' Vo' @ R&100V,"  R1R260V," RIR8R10V,
(4.2.11)

We finally obtain:

i+ cu+au+bu® =o0,v—oyu (4.2.12)
where:
, R6
Wy = ———
R3R5R7C1C2
1
‘T R2C1w,
a=1
R3
b=ra
R3Rs1
%z = R1R260
R3R9Rs1
% = R1R8R10
1
u = V_OW
1
B Vowy
y 1
u = VO(UOZ w
1
v = Toomrve Y
1
v= Voq
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After considering the substitution and the relasidoetween these parameters for the
real and ideal circuit, Eq. (4.2.12) can be writterthe general (2.1) or detailed ((3.1) and
(3.2)) forms which were considered during the nuca¢analysis.

For the ideal circuit of seven unidirectionallyupded, nonlinear Duffing oscillators,

the frequency, and the remaining dimensionless parameters dilaws:

wo> = 10000000 [1/4; ¢ = 0.03162; a = 1; b = 10;

0z =0y =6 = Rs*k

where:

R3 R3R9

k= 21R260 ~ R1RBRI0

1
= 0,00001 [=
)

k — according to the nominal values of real paranset

Rs = Rsl = Rs2 = Rs3 = Rs4 = Rs5 = Rs6 = Rs7
Rs[d <0+99900> {2]

Rs is the resistor controlling the value of thepmg.

For the real circuit, the frequenci®s and the remaining dimensionless parameters are

as follows:

o1’ = 7090665.05 [1/52];16= 0.031667; = 1.0000; b= 9.940;
®o?” = 7137128.00 [1/s2];,6= 0.031379; a= 1.0065; b= 10.015;
wos” = 7195387.66 [1/s2];3c= 0.031213; @= 1.0148; b= 10.107;
wos” = 7053587.10 [1/52],46= 0.031533; 2= 0.9948; h= 9.898;
wos” = 7369331.41 [1/52];56= 0.032047; &= 1.0393; b= 10.320;
wos” = 7188077.88 [1/s2];6c= 0.031829; @= 1.0137; b= 10.056;
wo7” = 7057167.34 [1/s2];76= 0.031490; A= 0.9953; b= 9.853;

0= 03 = Rej e ks D = Rsj v ks gyj:g*%:st*k*%:st*kyj;
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where:

Rs = Rsl = Rs2 = Rs3 = Rs4 = Rs5 = Rs6 = Rs7
Rs [ <0+99900> ]

kz; = 0.00000987 [12]; ky; = 0.00000984 [12];
kz, = 0.00000993 [12]; ky, = 0.00000992 [12];
kzz = 0.00001003 [X2]; kys = 0.00001004 [X2];
kz, = 0.00000982 [12]; ky, = 0.00000982 [12];
kzs = 0.00001021 [X2]; kys = 0.00001023 [12];
kzg = 0.00000995 [12]; kys = 0.00000998 [12];
kz; = 0.00000976 [X2]; kyz = 0.00000976 [X2];

Moreover, from the above description of the reatuit parameters, the following

relationships between the dimensionless and diraeakiparameters of the coupling result:
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4.3.Experimental investigatio

The built circuit (1), an AC (2), a NATIONAL INSTRMENTS data acquisition cal
(3), the LabVIEW SignalExpress 2010 software andhosebook (4) were used in t
experimental tests (Fig. 4.3.1)

Fig. 4.3.2. Electricatircuit of seven unidirectionally coupledonlinear Duffing oscillato.
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The test circuit (1) was connected via a powep $ir.ZAS. in Fig. 4.3.2) with an AC

RIGOL (2). The value of the supply voltage was éqoa15V. The circuit outputs {xvyi, Y7
in Fig. 4.3.2) were connected to a data acquisit@aml (3). The values of the three recorded
signals (X, yi, y7) were transmitted in real time to a notebook hjch saved the results
through the LabVIEW SignalExpress 2010 software.
The obtained results are presented in the form:

- phase portraits (Figs. 4.3.3, 4.3.4, 4.3.6, 483810, 4.3.12),

- Poincaré maps (Figs. 4.3.5, 4.3.7, 4.3.9, 4.3.8113),

- FFT spectrum analysis (Figs. 4.3.14-4.3.18).
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Fig. 4.3.15. FFT spectrum analysis for the cogpfiarametes=0.0660 — a circuit of seven real Duffing
oscillators.
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Fig. 4.3.17. FFT spectrum analysis for the coupfingametes=0.0700 — a circuit of seven real Duffing
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Fig. 4.3.18. FFT spectrum analysis for the coupfingametes=0.0730 — a circuit of seven real Duffing
oscillators.

4.4. FFT analysis of the electrical circuit

As in the case of the numerical FFT spectral amlyall frequencies on the FFT
spectrum graphs (Fig. 4.3.14-4.3.18) were dividgedhe value otwos. This made the use of
the concept of dimensionless frequelrgf the signal possible.

For the coupling parameter = 0.0490, the first Hopf-type bifurcation occunsda
a single main frequenc®, appears on the spectrum (see Fig. 4.3.14) regnegahe limit
cycle (Fig. 4.3.4, 4.3.5) existing in a relativelgirrow range of the coupling parameter. This
solution is represented by a single, main frequedgyn the FFT spectral analysis graph.
An increase in the coupling parameter 0.0490 leads to the second Hopf-type bifurcation
and a 2D torus (Fig. 4.3.6, 4.3.7) appears, whglrepresented by two disproportionate
frequencie€)y andQ;. In Fig. 4.3.15, newly formed peaks in additiorthe main frequencies
can be seen. As in the case of the spectral asalgsithe numerical circuit, the distance
between the newly formed peaks and the main pesla ftanstant value or is a multiplication

of this constant. As a result, the first frequerscgharacterized by the pe&land the second
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one, disproportionate to the first frequency, isoagated with a fixed value (marked in red on

the graphs) shift of the peaks to the p@gkequal to:

Qn = QO + nBl (441)

where:
B1(=0.00002) — constant offset between the peaks,
n — number of the analyzed frequency.

For example, the frequen€¥; in Fig. 4.3.15 is:

0, =0Q,— By =0.17063 — 0.00384 = 0.16679

The 2D torus dominates in a wide range of the kogp parameter -
o [ (0.0490+0.0680). For the coupling parameter 0.0680, the third Hopf-type bifurcation
and a transition from the 2D torus to a 3D torug.(B.3.8, 4.3.9) takes place. The FFT
spectral analysis graph (Fig. 4.3.16) shows threguiencies disproportionate to each other.
The first frequency is represented by the p@akThe second frequencyQ@y — is associated
with a fixed distance (marked in red) relative e peakQ,, while the third one Q.- is
associated with a fixed distance (marked in greelative to the peaks representing the first
and second disproportionate frequency. Similarlfoasthe numerical circuit of oscillators,
the third disproportionate frequency can be desdrity the equation:

Qom = Qp +mf, (4.4.2)

where:
B2(=0.00003 - constant offset between the peaks,
n, m- number of the analyzed frequency.
Using formula (4.4.2), the frequen€y;.; visible in Fig. 4.3.16 can be calculated as

follows:

Q4 ,=0,-8,=0,—pB;—B, =0.17013 — 0.00401 — 0.00108 = 0.16504
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The 3D torus is stable up to= 0.0700, where a 2D torus appears again but with
a multiplied period (Fig. 4.3.10, 4.3.11), whichnche an effect of the frequency (modes)
synchronization or a 2D torus period-doubling lehtron after the reverse Hopf bifurcation.
In Fig. 4.3.17, as well as in the numerical analythe first frequency is characterized by the
peakQoand the second frequency, disproportionate toiteedne, is associated with a fixed
value (marked in red on the graphs) shift of thakgseto the peal,. To calculate the

frequency, we use formula (4.4.1), for example:

Q, =Q¢+2%p; =017113 +2 % 0.00110 = 0.17333

For the coupling parameter= 0.0730, a transition to a chaotic solution (Hg.12,
4.3.13) characterized by a continuous FFT spectuaph (see Fig. 4.3.18) occurs.
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CHAPTER 5

NUMERICAL ANALYSIS OF A DUFFING OSCILLATOR
WITH A TIME DELAY LOOP

In this Chapter, a numerical analysis of a sirigigfing oscillator with a time delay
loop is demonstrated. An influence of changes m vhlue of time delay on the system
dynamics is analyzed. The numerical simulations@@iout are compared with the numerical
results obtained for the circuit of unidirectioiyatoupled Duffing oscillators, which was
presented in Chapter 3.

A single Duffing oscillator with a time delay loos described by Eq. (1.3).

Substitutingx = u, y = u, a single second-order equation was convertedtibofirst-order

equations:
x(t) = y(t)
y() = —cy(t) — ax(t) — bx(£)* + p[x(t — ) — x(t)] (5.1)

where the parameters are:

c=0.03162
a=1
b=10
p=30

Comparing Eqg. (5.1) with the generalized equatiefining a ring of unidirectionally
coupled Duffing oscillators (Eqg. (2.1)), we can skat the mathematical structure of these
system is very close to each other. For Eq. (5B time delay is obtained by changing the
parameter, while in Eq. (2.1), the resulting time delay &ated to the phase shift between
neighboring oscillators. Thus, the mechanism ofllasion excitation in both cases is caused
by a unidirectional feedback which is realized bgtaucture of connected oscillators or by

a delay feedback loop.
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To compare the results, in both considered casesfor a ring of coupled oscillators
and a single Duffing oscillators with a feedbackdpthe parameteis b, ¢ have the same

values.

5.1. Numerical results

The numerical investigations of a single Duffirggillator with a time delay loop were
carried out with the MATLAB R2009b software. Thduocation parameter is the time delay
7. The obtained results were illustrated by:

- bifurcation diagrams (Fig. 5.1),

- phase portraits (Figs. 5.2, 5.4, 5.6, 5.8),
- Poincaré maps (Figs. 5.3, 5.5, 5.7, 5.9),
- FFT spectrum analysis (Figs. 5.10-5.13).
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204 ! Il
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Fig. 5.1. Bifurcation diagram of the displacemerersus the delay parameteor a single Duffing oscillator
with a time delay loop.
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Fig. 5.10. FFT spectrum analysis for the delay petar:=0.50 — a single Duffing oscillator with a time dgl
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Fig. 5.11. FFT spectrum analysis for the delay petar:=0.72 — a single Duffing oscillator with a time dgl
loop.
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5.2. FFT analysis of the studied system

For the delay parameter> 0.01, the first Hopf bifurcation occurs. The @stigated
system passes from a stationary to periodic saolusiod the first frequency of oscillation
appears. In Fig. 5.10, this frequency, as for thg of seven coupled Duffing oscillators, is
represented by the single pe@k The limit cycle exists in quite a wide range bé tdelay
parameter [J <0.01+0.67>. For = 0.68, the second Hopf bifurcation takes pladee Timit
cycle transforms into a quasi-periodic solutiong(F.4, 5.5). In Fig. 5.11, this 2D torus is
presented by two main disproportionate frequen@g®; and their sub-harmonics. Similarly

as in Chapters 3 and 4, the newly formed frequercae be calculated using the formula:

QTL == !20 + Tlﬁl (52)

where:
f1(=0.00002) — constant offset between the peaks,
n — number of the analyzed frequency.

For example, the frequen& in Fig. 5.11 is:

0, =0y + 20, =3.46133 + 2 x 0.69869 = 4.85871

Forz = 1.02, a period-doubling bifurcation of the 2Dusr(Fig. 5.6, 5.7) takes place.
Figure 5.12 shows that between the pe@ks Q.4, Q.,, Qo, Q2, Qu, Q6, representing the 2D
torus, there are new peaks which divide the digtdmetween the previous ones exactly in
half. They appear as an effect of the torus pediogbling. For example, according to formula
(5.2), the frequenc®_s in Fig. 5.12 is:

0_3=0,—3B; =3.30071 — 3 * 0.24896 = 2.55383
A further increase in the delay parameter leada thaotic solution (Fig. 5.8, 5.19).
Dominant frequencies cannot be specified on thptgod the FFT spectral analysis (Fig.5.13)

All peaks are located very close to each otheriaradchaotic manner. As a consequence, an

analysis and interpretation of the results is iropcable.
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CHAPTER 6

ANALYSIS OF THE RESULTS AND CONCLUSIONS

In Chapters 2-4 of this dissertation, results bé& tanalytical, numerical and
experimental investigations of a circuit of sevemminally identical, unidirectionally coupled
Duffing oscillators were presented. On the otherdha numerical bifurcation analysis of the
analogous single Duffing oscillator with a time alelloop was demonstrated in Chapter 5.
Comments, conclusions and hypotheses, which arzided below, have been formulated on
the basis of these data.

The stability analysis of the equilibrium positidaritical point) of the linearized
system of unidirectionally coupled oscillators (@tea 2) showed that small differences in
parameters between them had a minimal impact omstability threshold of the equilibrium
position. The critical point loses its stabilityedto the Hopf bifurcation caused by an increase
in the coupling parameter. This instability resufisan appearance of lmrmonic rotating
wave (HRW), which is confirmed in the next chapters.

Analyzing the results of the experiment (Chapteradd comparing them with the
results of the numerical simulations (Chapter 3)ao€ircuit of seven real (non-identical)
Duffing oscillators, we can see the same scendria ansition to chaotic behavior. The
results achieved in the experiment confirm the Itesof the numerical studies. However,
some differences in the values of the coupling patar, for which corresponding
bifurcations occur, can be observed. For the cpomding bifurcation, the value of the
coupling parameter in the experimental system (#ig§.3+4.3.13) is higher in comparison
with the numerical model (Fig. 3.1.8, 3.1.11, 321.8.1.15, 3.1.16, 3.1.19+3.1.22, 3.1.25,
3.1.26). Slight differences also exist in the valwé dimensionless frequencies in the FFT
spectrum analysis graphs (Fig. 4.3.14+4.3.18 ah®8, 3.1.30, 3.1.32, 3.1.33, 3.1.35). This
may be an effect of a transition of one (or seyeyhintegrating amplifiers into saturation. As
a result, the amplifier stops to operate in theednrange. Consequently, in order to
compensate for the possible saturation effecttfisrworking amplifier or amplifiers), it was
necessary to increase a value of the coupling peteanm order to achieve the same system
dynamics as in the case of the numerical investigat Besides, slight additional resistance

formed on the paths connecting various elemeritsarelectric circuit. There was also a slight

81 |Page



change in the resistance and capacitance of elsmaritich formed during soldering
components on a printed circuit board.

The demonstrated (in Chapters 3 and 4) resulthefekperimental and numerical
investigations indicate that the stable three-fesqy quasi-periodicity is a typical
phenomenon for rings of unidirectionally coupledasmomous Duffing oscillators and it can
occur in a wide range of system parameters. Defipithis trend seems to be in contradiction
to the classical NRT theorem. In agreement withhyy@otheses proposed earlier (see Chapter
1), such an unexpected effect of the 3D torus lgtgban be explained by some properties of
the spatiotemporal or rotational symmetry of ideadtioscillators coupled unidirectionally in
the ring configuration [72,91,92]. However, the lgas proves that this solution remains, in
spite of some symmetry breaking caused by the pateanmismatch. On the other hand, its
relatively considerable influence on the real systynamics (Figs. 3.1.3, 3.1.4, 3.1.6) in
comparison with the case of identical oscillatdfgy$. 3.1.1, 3.1.2, 3.1.5) is clearly visible.
This influence manifests with some shift in the wtpe of bifurcations in both the cases,
reducing the range of the 3D torus existence fer disturbed version of the ring under
consideration. Moreover, a qualitatively differeavolution to chaotic motion can be
observed. In the case of identical nodes, a diracisition from a 3D torus to chaos takes
place (Fig. 3.1.5), whereas for slightly differ@airameters of nodes, a return conversion from
the 3D to 2D quasi-periodic attractor analysis ogchefore a transition to chaos via
consecutive torus period-doubling bifurcations (Bd..6).

The analytic investigations presented in Chaptershbw that a RW appears
simultaneously with the first Hopf bifurcation dfet equilibrium position U(0,0) in the system
under consideration. Obviously, this is a PRW c#{rispeakinga harmonic rotating wave
(HRW). The threshold of the coupling strength required for its occurrence has been
determined by an eigenvalue analysis of the lizedrsystem (2.1.1) demonstrated in Chapter
2. This value amounts | = 0.0332 for identical nodes (see Figs. 2.1.1&adL, 3.1.2) and
o1 = 0.0365 for real oscillators (see Figs. 2.2.1 8rid3, 3.1.4). According to this analysis,
the Hopf bifurcation activating the HRW takes plasken an increase in the coupling
coefficiento causes that the largest real part of eigenval2dsl) becomes positive. In the
case of identical nodes, they start to oscillatenioaically (Fig. 6.1) in accordance with the
solution:
xj = Ae'(@ot*id) (6.1)
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whereA is an amplitude an@d = 2n/N is a unit phase shift between two neighbor odoilta
Substituting this solution into (2.1), with an asgion of the equality of parameters and
approximating the nonlinear component with the falabx;® = bx;|x;%| = bA%x;,

we obtain the characteristic equation
—wo? + idwy + a + bA% + (1 —e"®) = 0. (6.2)
Separation of Eg. (6.2) into real (6.3a) and imagyr(6.3b) parts:

—wy? + a+ bA%*+ o(1 — cosp) =0, (6.3a)
dwgy + osing = 0, (6.3b)

makes it possible to determine analytically thenown frequency:

wo = +/a? + bA% + (1 — cos), (6.4)

and amplitude of oscillations:

Ao \/azsin2¢ —d?a? —d?a(1 — cos¢)
d?b
(6.5)
Including the mismatch of parameters into the abergd system, we havd harmonic
solutions of individual nodes; = A4;e'(“ot*®) after the first Hopf bifurcation, differing in

the amplitudes\; and the phase shifig (see Fig. 6.4). The characteristic equation fahea

oscillator is now as follows:

—(1)02 + ld](UO + a]- + b]A]2 + O'k][l - (qu_;l> e_i(¢f_¢f—1)] =0. (66)

Separating real and imaginary components of Ed) (&ar all ring items, we obtain N2
algebraic equations. They can be written in theegarform:

CRe(wOJAjJ d)]) =0, (678.)
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Crm(wo, 4, ¢;) = 0. (6.7b)
Equation (6.7a-b) together with the formula

Zy:l(ﬁbj - ¢j—1) = 2m, (6.7¢)

allows us to calculate all unknown parametegsA; andeg;.

Consequently, the RW phenomenon still persistslightly non-identical parameters
of oscillators also in the case of more complexatyital responses of the system (quasi-
periodic or chaotic). In Figs. 6.1-6.6, time tracésall seven oscillators representing regular
responses of ideal (Figs. 6.1-6.3) and real (F6g4-6.6) circuits, i.e., periodic and two- or
three-frequency quasi-periodic cases, respectiwaly, be seen. For identical nodes, we can
observe an obvious equality of their amplitudes phdse shifts (see Figs. 6.1-6.3) resulting
from the symmetry of the ring. The parameter misimatauses some discrepancy of
amplitudes and phases (Figs. 6.4-6.6) but the Rittewith the dominant frequenay, is
preserved, in spite of more complex periodicityostillations, especially clearly visible in
cases of quasi-periodic motion (see Figs. 6.5, 6.6)
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Fig. 6.1. Overlapped time traces of all seven &&oils, an ideal circuit, harmonic motion.
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Analyzing these solutions, we can formulate a atnoje explaining the observed
behavior of the system under consideration, whichlustrated in Fig. 6.7 for the case of
identical nodes. According to this approach, atraal, let us sayangent (to the ring),
degree of freedom (DoF) resulting from the unidimal connectivity scheme is independent
of an individual node, let us s@iyansverse (to the ring) degrees of freedom. A small coupling
(0<01) does not enable an initiation of the RW and dainpecillations of each item in the
transverse direction with the frequencyy take place (Fig. 6.7a), i.e., the global equilibri
position (dotted circle in Fig. 6.7a) is stable.eThirst Hopf bifurcation atr; = 0.0332
activates the rotational degree of freedom (HRW)tkansverse vibrations are still damped.
Thus, now we can observe a transversally stabldi@gqum floating harmonically with the
amplitudeA (Fig. 6.7b), defined by Eqg. (6.5) and shown in.Ed., due to rotational forcing.
In the scheme shown in Fig. 6.7b, it is manifesteth an eccentricity of the distande
(amplitude of such floating) between solid and elbttircles. Rotations of the solid circle
cause harmonic oscillations around the stable ipasiepresented by the dotted circle. Just
after a slight increase in the coupling strendtk,4econd Hopf type bifurcationat= 0.0337
takes place, which is the first one in thansverse DoF. It activates a limit cycle (LC) of the
frequencyw; in thetransverse direction (Fig. 6.7c¢), which is disproportionatedy,, i.e., the
frequency of the HRW. As a result, we can seeTthsolution as a combination of the HRW
and the LC — see Fig. 6.7. After the next Hopf tyjeircation ato; = 0.0436, the third
incommensurate frequeney, appears and, consequently, the stable three-ineguguasi-
periodic solutioniT can be observed (Fig. 6.7d and 6.3). However, rdimp to the theorem
represented by us, the third Hopf bifurcation i/dhe second in the transverse DoF and then
the T* solution can be considered as a superpositio®f? transverse solution and the
independent HRW (see Fig. 6.4). Finally, chaos dateis after crossing the linsif = 0.0478
(Figs. 3.1.1, 3.1.2 and 3.1.5). From the viewpahiglobal ring dynamics, it looks like a
transition to chaos after the fourth Hopf bifuroatibut from the transverse DoF point of
view, this is a realization of the classical NRE®sario where a chaotic attractor appears as a
product of the 3D torus destruction just after thied consecutive Hopf bifurcation. Thus,
global dynamics of the ring is a superposition afmhonic rotational forcing (manifested with

the HRW) and a transversal response of individsaillators.
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A good way to illustrate this idea on the examgléhe system under consideration is
to extract the transverse response from the glafigdynamics and present its analysis. This
can be achieved by elimination of the HRW composédearly visible in Fig. 6.1) from the
registered global ring signal. The same componargshidden in the skeleton of quasi-
periodic and chaotic solutions. These HRW modesbeasimply removed from responses of
identical oscillators by summing up their signaBue to the symmetry of their phase
distribution along the ring, their sum is equak&yo in each moment of the system evolution.
Thus, such a sum signal does not contain the freyu@o (6.4) in the spectrum, so it is
representative for the transverse dynamics of osgillators. In Fig. 6.8, a bifurcation
diagram of the surﬁNx,- versuss, corresponding to Figs. 3.1.1 and 3.1.2, and e¢leed time
courses of this sum (Figs. 6.9-6.12) are demomstrathe equilibrium remains stable up to
the values,, where the first transverse Hopf-type bifurcatiakes place (Fig. 6.8). Next,
a stable LC in the range<o<as, corresponding to th&” solution from Figs. 3.1.1 and 3.1.2,
is observed (see its time diagram in Fig. 6.9). <eguently, the Hopf-type bifurcation &
leads to the existence of a transverse 2D torus @-10) and its period-doubling (Fig. 6.11)
in the intervab;<o<o4. This sequence of bifurcations is also reflecte#igs. 3.1.1 and 3.1.2
for the global three-frequency quasi-periodicityheT last Hopf-type bifurcation at,
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destabilizes the transverse 2D torus and chaotitombecomes dominant (Fig. 6.12). Thus,
in the transverse DoF, we observe a typical NRTiage of a transition to chaos.

In the case of the mismatch of parameters betweenoscillators, the HRW of the
frequencywo also exists but it is non-symmetric in accordandth the solutions to Egs.
(6.7a-c), as shown in Fig. 6.4. This is the reasby the rotational DoF cannot be effectively
eliminated from the global signal by a sum of the\W components, so the visualization of
transverse modes by this method, analogous to dhat shown in Figs. 6.8-6.12, is
impractical. Nevertheless, the conjecture preserdbdve on the superposition effect
explaining the robust stability of the observedt8tus is definitely still applicable in the real
circuit with the parameter mismatch, in spite omsoobvious differences in sequences of
bifurcations between identical and real circuitenipare Figs. 3.1.1, 3.1.2, 3.1.5 with Figs.
3.1.3,3.1.4, 3.1.6).

After analyzing the results of the numerical siniolas of a single Duffing oscillator
with a time delay loop (Chapter 5) and comparirgnthwith the results for a circuit of seven
identical unidirectionally coupled Duffing osciltas (Chapter 3), we can say that they exhibit
a considerable similarity. In both cases, therdahis first and second Hopf bifurcation.
A transition from the stationary to periodic sotutiand then to the quasi-periodic solution
(2D torus) can be seen. However, in contrast to uhielirectionally coupled oscillators,
a stable three-frequency torus is not observedénsystem with time delay. For a single
Duffing oscillator with time delay, a period-doutidj bifurcation of the 2D torus takes place
after the second Hopf bifurcation. A further inean the control parameter (time delay)
leads to a chaotic solution.

Summing up, a robustly stable three-frequency gp@sodic solution in the ring of
unidirectionally coupled Duffing oscillators hasemeconfirmed numerically and verified
experimentally. The mechanism of such robust staliias been explained as an effect of the
structural separation of rotational and transvdde€s. Moreover, it has been shown that
initiation and propagation of the RW is possiblsoain unidirectional rings of slightly non-
identical oscillators. This fact can shed a newtlign the nature of the RW phenomenon. On
the other hand, an absence of a 3D torus in tlgeesiuffing oscillator with a time delay loop
may be explained by an absence of the RW, whiclurecm the ring of unidirectionally
coupled oscillators. Therefore, a superpositioectfbf rotational and transversal vibrations
forms, which stabilizes three-frequency quasi-pBdosolutions according to the above
hypothesis, is not possible in this system. Henwhematical and physical properties of the

RW will be a subject of further investigations hetnearest future.
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NUMERYCZNA | EKSPERYMENTALNA ANALIZA EFEKTOW
SPRZEZENIA | OPO ZNIENIA CZASOWEGO W SZEREGACH
NIELINIOWYCH OSCYLATOROW

Przedmiotem niniejszej pracy jest analiza klasyganascylatora typu Duffinga w dwéch
konfiguracjach systemowych:
1. jako uktad wziowy w domkngtym szeregu (pigcieniu) jednokierunkowo
sprzzonych oscylatoréw,
2. jako ukiad z ptla op&nienia czasowego.

Gtownym celem pracy bylo pokazanie analogii dynamych pomgdzy szeregami
jednokierunkowo sprzonych oscylatorow, a uktadami z gpdeniem czasowym, gtéwnie w
kontelécie podobiéstwa scenariuszy bifurkacyjnych, prowadygch od stanu stacjonarnego
poprzez ruch regularny do dynamicznego hiper-cha®zczegdélny nacisk zostanie paloy
na identyfikacje mechanizmu destabilizacji staracjsinarnego oraz rozg@ania okresowego
w rezultacie wzrostu parametru sgienia lub wielkdci op&nienia czasowego.

Natomiast teza pracy brzmiMozliwe jest wystpowanie statecznego, troj-
czstasciowego rozwjzania quasi-okresowego w szeregach jednokierunkspvazonych
oscylatorow oraz istnieje wiele analogii paaizy zachowaniami dynamicznymi takich
uktadow a oscylatorami z opidionym sprzzeniem zwrotnym

W pierwszej cgsci pracy (rozdzialy 2 i 3) dokonano numerycznej laya
bifurkacyjnej szeregu siedmiu identycznych orazczgevistych, tzn. z uwzgtnieniem
zmierzonych na stanowisku @mwadczalnym ranic parametrow, spezonych
jednokierunkowo oscylatorow Duffinga. Dokonano rés#rporoéwnania rezultatow symulaciji
numerycznych dla identycznych oraz rzeczywistyatylasorow.

W kolejnej czsci pracy (rozdziat 4) zaprezentowano stanowiskéwitdczalne,
przeprowadzono identyfikagj jego parametrow oraz badania eksperymentalne celem
potwierdzenia symulacji numerycznych dla badanedmwvoalu. Wyniki eksperymentu
poréwnano z rezultatami numerycznymi.

W ostatniej czsci pracy dokonano analizy numeryczne] pojedynczegoylatora
Duffinga z wprowadzos petla op&nienia czasowego (rozdziat 5). Wyniki eksperymentu
numerycznego zostalty porownane z wynikami dla ggeveidentycznych, spezonych

oscylatoréw w kontedcie podobiéstwa scenariuszy bifurkacyjnych.
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Podsumowujc, w pracy potwierdzono i zweryfikowano @dadczalnie istnienie
statecznego  tréj-estcsciowego  rozwazania  quasi-okresowego w  obwodzie
jednokierunkowo sprzonych oscylatoréw Duffinga. Mechanizm takiej trwadéatecznéci
torusa 3D zostat w pracy wyjaiony hipotez o strukturalnej separacji rotacyjnego (fala
rotacyjna) i transwersalnych (odpowiedzi oscylatgré&topni swobody. Z drugiej strony,
wykazano, ze inicjacja i propagacja fali rotacyjnej jest siwa réwniez w obwodach
jednokierunkowo spkzonych oscylatoréw rzeczywistych, czyli przy brakdealnej
zgodndci wartasci parametrow. Fakt ten me rzuct noweswiatto na charakter i dynangk
zjawiska fali rotacyjnej.

Natomiast, zgodnie ze sformutowgahipotez, brak rozwizania w postaci torusa 3D
w ukfadzie pojedynczego oscylatora typu Duffingawprowadzon petla op&nienia
czasowego me by spowodowane niewygtowaniem fali rotacyjnej, ktora pojawiagsiv
szeregach spgzonych jednokierunkowo oscylatorow.

Matematyczne i fizyczne wdaiwosci fali rotacyjnej generowanej w ukitadach
jednokierunkowo sprzonych oscylatoréw dula przedmiotem dalszych batdav najblizszej

przyszigci.
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